Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543175

RESUMO

Inappropriate expression of histone deacetylase (HDAC-6) and deregulation of the phosphatidylinositol 3-kinase (PI3K) signalling pathway are common aberrations observed in cancers. LASSBio-2208, has been previously described as a dual inhibitor in the nanomolar range of HDAC-6 and PI3Kα and is three times more potent in inhibiting HDAC-6. In this paper we described the cytotoxic and antiproliferative potency of LASSBio-2208 on different tumour cell lines, its possible synergism effect in association with PI3K and HDAC-6 inhibitors, and its drug metabolism and pharmacokinetics (DMPK) in vitro profile. Our studies have demonstrated that LASSBio-2208 has moderate cytotoxic potency on breast cancer cell line MCF-7 (IC50 = 23 µM), human leukaemia cell line CCRF-CEM (IC50 = 8.54 µM) and T lymphoblast cell line MOLT-4 (IC50 = 7.15 µM), with no cytotoxic effect on human peripheral blood mononuclear cells (hPBMC). In addition, it has a good antiproliferative effect on MCF-7 cells (IC50 = 5.44 µM), low absorption by parallel artificial membrane permeability-gastrointestinal tract (PAMPA-GIT) and low permeation by parallel artificial membrane permeability-blood-brain barrier (BBB) (PAMPA-BBB), exhibiting high metabolic stability in rat plasma. Moreover, LASSBio-2208 exhibited synergism when combined with getadolisib and tubastatin A, using the concentrations corresponding to their CC50 values on MOLT-4 and CCRF-CEM cells.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259357

RESUMO

Targeted antitumour therapy has revolutionized the treatment of several types of tumours. Among the validated targets, phosphatidylinositol-3 kinase (PI3K) deserves to be highlighted. Several PI3K inhibitors have been developed for the treatment of cancer, including gedatolisib (4). This inhibitor was elected as a prototype and molecular modifications were planned to design a new series of simplified gedatolisib analogues (5a-f). The analogues were synthesised, and the comparative cytotoxic activity profile was studied in phenotypic models employing solid and nonadherent tumour cell lines. Compound 5f (LASSBio-2252) stood out as the most promising of the series, showing good aqueous solubility (42.38 µM (pH = 7.4); 39.33 µM (pH = 5.8)), good partition coefficient (cLogP = 2.96), cytotoxic activity on human leukemia cell lines (CCRF-CEM, K562 and MOLT-4) and an excellent metabolic stability profile in rat liver microsomes (t1/2 = 462 min; Clapp = 0.058 mL/min/g). The ability of 5f to exert its cytotoxic effect through modulation of the PI3K pathway was demonstrated by flow cytometry analysis in a comparative manner to gedatolisib.

3.
Pharmaceutics ; 15(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111767

RESUMO

LASSBio-1920 was synthesized due to the poor solubility of its natural precursor, combretastatin A4 (CA4). The cytotoxic potential of the compound against human colorectal cancer cells (HCT-116) and non-small cell lung cancer cells (PC-9) was evaluated, yielding IC50 values of 0.06 and 0.07 µM, respectively. Its mechanism of action was analyzed by microscopy and flow cytometry, where LASSBio-1920 was found to induce apoptosis. Molecular docking simulations and the enzymatic inhibition study with wild-type (wt) EGFR indicated enzyme-substrate interactions similar to other tyrosine kinase inhibitors. We suggest that LASSBio-1920 is metabolized by O-demethylation and NADPH generation. LASSBio-1920 demonstrated excellent absorption in the gastrointestinal tract and high central nervous system (CNS) permeability. The pharmacokinetic parameters obtained by predictions indicated that the compound presents zero-order kinetics and, in a human module simulation, accumulates in the liver, heart, gut, and spleen. The pharmacokinetic parameters obtained will serve as the basis to initiate in vivo studies regarding LASSBio-1920's antitumor potential.

4.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893736

RESUMO

Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, ethinyl and benzyl analogues, were designed and synthesized. A comparison between the cytotoxic effect of these homologs and 2 on different human tumor cell lines was performed from a cell viability study using MTT with 48 h and 72 h incubations. In general, the compounds were less potent than CA-4, showing CC50 values ranging from 0.030 µM to 7.53 µM (MTT at 72 h) and 0.096 µM to 8.768 µM (MTT at 48 h). The antimitotic effect of the target compounds was demonstrated by cell cycle analysis through flow cytometry, and the cellular mechanism of cytotoxicity was determined by immunofluorescence. While the benzyl homolog 10 (LASSBio-2070) was shown to be a microtubule stabilizer, the lead-compound 2 (LASSBio-1586) and the methylated homolog 3 (LASSBio-1735) had microtubule destabilizing behavior. Molecular docking studies were performed on tubulin protein to investigate their binding mode on colchicine and taxane domain. Surprisingly, the benzyl homolog 10 was able to modulate EGFR phosphorylate activity in a phenotypic model. These data suggest LASSBio-2070 (10) as a putative dual inhibitor of tubulin and EGFR. Its binding mode with EGFR was determined by molecular docking and may be useful in lead-optimization initiatives.

5.
Eur J Med Chem ; 204: 112492, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717478

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors have emerged as a new strategy to treat asthma and other lung inflammatory diseases. Searching for new PDE4 inhibitors, we previously reported the discover of LASSBio-448, a sulfonamide with potential to prevent and reverse pivotal pathological features of asthma. In this paper, two novel series of sulfonamide (6a-6m) and sulfonyl hydrazone (7a-7j) analogues of LASSBio-448 have been synthetized and evaluated for selective inhibitory activity toward cAMP-specific PDE4 isoforms. From these studies, we have identified 7j (LASSBio-1632) as a new anti-asthmatic lead-candidate associated with selective inhibition of PDE4A and PDE4D isoenzymes and blockade of airway hyper-reactivity (AHR) and TNF-α production in the lung tissue. In addition, it was able to relax guinea pig trachea on non-sensitized and sensitized animals and showed great TGI permeability.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Animais , AMP Cíclico/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Hidrazonas/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos
6.
Eur J Pharmacol ; 863: 172662, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31539551

RESUMO

LASSBio-596 (2-[4-(1,4-thiazinan-4-ylsulfonyl) phenylcarbamoyl] benzoic acid) is a molecular hybrid of anti-tumor necrosis factor α (TNF-α) and phosphodiesterase 5 inhibitors, and its anti-inflammatory effects have been demonstrated in experimental models of inflammation. The aim of this study was to evaluate the gastroprotective effect of LASSBio-596 in an ethanol-induced acute gastritis model. Before induction of gastric damage, mice were pretreated with LASSBio-596 (20 mg per os (p.o.), Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 3 mg/kg, intraperitoneally [i.p.]) or with 1400W (10 mg/kg, i.p.) given alone or in their combinations. Thirty minutes later, gastric damage was induced by intragastric instillation of 50% ethanol (0.5 ml/25 g, by gavage). After 1 h, gastric damage (hemorrhagic or ulcerative lesions) was measured by planimetry. Samples of the stomach were also taken for histopathological assessment and for assays of tissue myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA), and inflammatory cytokines. Ethanol administration induced the development of gastric lesions in mice. LASSBio-596 reduced gastric damage, epithelial cell loss and hemorrhage, and restored the antioxidant defense system by decreasing the levels of MDA and the consumption of GSH in gastric mucosa. LASSBio-596 also decreased gastric TNF-α and interleukin-1ß (IL-1ß) protein levels, MPO enzymatic activity, and hemoglobin levels. Treatment with the nitric oxide synthase inhibitors L-NAME and 1400W reversed the effects of LASSBio-596 on ethanol-induced gastric lesions. LASSBio-596 did not alter mucus content and pH of gastric secretions. In summary, LASSBio-596 exerts protective effects against ethanol-induced gastric injury. The gastroprotective effects of LASSBio seem to be NO-dependent.


Assuntos
Citoproteção/efeitos dos fármacos , Etanol/efeitos adversos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Ácidos Ftálicos/farmacologia , Sulfonamidas/farmacologia , Amidinas/farmacologia , Animais , Benzilaminas/farmacologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Mucosa Gástrica/metabolismo , Glutationa/metabolismo , Hemoglobinas/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Malondialdeído/metabolismo , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Omeprazol/farmacologia , Peroxidase/metabolismo
7.
Exp Parasitol ; 201: 57-66, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004571

RESUMO

In the present study, we investigated the in vitro and in vivo leishmanicidal activity of synthetic compounds, containing a semicarbazone scaffold as a peptide mimetic framework. The leishmanicidal effect against amastigotes of Leishmania amazonensis was also evaluated at concentration of 100 µM-0.01 nM. The derivatives 2e, 2f, 2g and 1g, beyond the standards miltefosine and pentamidine, significantly diminished the number of L. amazonensis amastigotes in macrophages. These derivatives were also active against amastigotes of L. braziliensis. As 2g presented potent leishmanicidal activity against the amastigotes of L. amazonensis in macrophages, we also investigated the in vivo leishmanicidal activity of this compound against L. amazonensis. Approximately 105L. amazonensis promastigotes were subcutaneously inoculated into the dermis of the right ear of BALB/c mice, which were subsequently treated with 2g (p.o. or i.p.), miltefosine (p.o.) or glucantime (i.p.) at 30 µmol/kg/day x 28 days. Thus, a similar reduction in the lesion size was observed after the administration of 2g through oral (63.7 ±â€¯10.1%) and intraperitoneal (61.8 ±â€¯3.7%) routes. A larger effect was observed after treatment with miltefosine (97.7 ±â€¯0.4%), and glucantime did not exhibit activity at the dose administered. With respect to the ear parasite load, 2g diminished the number of parasites by p.o. (30.5 ±â€¯5.1%) and i.p. (33.3 ±â€¯4.3%) administration. In addition, 2g induced in vitro apoptosis, autophagy and cell cycle alterations on L. amazonensis promastigotes. In summary, the derivative 2g might represent a lead candidate for antileishmanial drugs, as this compound displayed pronounced leishmanicidal activity.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Semicarbazonas/uso terapêutico , Análise de Variância , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Caspases/análise , Ciclo Celular , Linhagem Celular , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Feminino , Citometria de Fluxo , Concentração Inibidora 50 , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos BALB C , Pentamidina/química , Pentamidina/farmacologia , Pentamidina/uso terapêutico , Fosfolipídeos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Semicarbazonas/química , Semicarbazonas/farmacologia
8.
Sci Rep ; 9(1): 14, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626888

RESUMO

Clinical data acquired over the last decade on non-small cell lung cancer (NSCLC) treatment with small molecular weight Epidermal Growth Factor Receptor (EGFR) inhibitors have shown significant influence of EGFR point mutations and in-frame deletions on clinical efficacy. Identification of small molecules capable of inhibiting the clinically relevant EGFR mutant forms is desirable, and novel chemical scaffolds might provide knowledge regarding selectivity among EGFR forms and shed light on new strategies to overcome current clinical limitations. Design, synthesis, docking studies and in vitro evaluation of N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives (7a-m) against EGFR mutant forms are described. Compounds 7h and 7l were biochemically active in the nanomolar range against EGFRwt and EGFRL858R. Molecular docking and reaction enthalpy calculations have shown the influence of the combination of reversible and covalent binding modes with EGFR on the inhibitory activity. The inhibitory profile of 7h against a panel of patient-derived tumor cell lines was established, demonstrating selective growth inhibition of EGFR related cells at 10 µM among a panel of 30 cell lines derived from colon, melanoma, breast, bladder, kidney, prostate, pancreas and ovary tumors.


Assuntos
Acrilamidas , Antineoplásicos , Inibidores de Proteínas Quinases , Acrilamidas/síntese química , Acrilamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular/métodos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia
9.
Clinics (Sao Paulo) ; 73(suppl 1): e813s, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30540125

RESUMO

Cell cycle control genes are frequently mutated in cancer cells, which usually display higher rates of proliferation than normal cells. Dysregulated mitosis leads to genomic instability, which contributes to tumor progression and aggressiveness. Many drugs that disrupt mitosis have been studied because they induce cell cycle arrest and tumor cell death. These antitumor compounds are referred to as antimitotics. Vinca alkaloids and taxanes are natural products that target microtubules and inhibit mitosis, and their derivatives are among the most commonly used drugs in cancer therapy worldwide. However, severe adverse effects such as neuropathies are frequently observed during treatment with microtubule-targeting agents. Many efforts have been directed at developing improved antimitotics with increased specificity and decreased likelihood of inducing side effects. These new drugs generally target specific components of mitotic regulation that are mainly or exclusively expressed during cell division, such as kinases, motor proteins and multiprotein complexes. Such small molecules are now in preclinical studies and clinical trials, and many are products or derivatives from natural sources. In this review, we focused on the most promising targets for the development of antimitotics and discussed the advantages and disadvantages of these targets. We also highlighted the novel natural antimitotic agents under investigation by our research group, including combretastatins, withanolides and pterocarpans, which show the potential to circumvent the main issues in antimitotic therapy.


Assuntos
Antimitóticos/química , Antineoplásicos/química , Produtos Biológicos/química , Desenvolvimento de Medicamentos/métodos , Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Humanos , Mitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
10.
Xenobiotica ; 48(12): 1258-1267, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29160126

RESUMO

1. LASSBio-1736 ((E)-1-4(trifluoromethyl) benzylidene)-5-(2-4-dichlorozoyl) carbonylhydrazine) is proposed to be an oral cysteine protease leishmanicidal inhibitor. 2. This work aimed to investigate plasma pharmacokinetics, protein binding and tissue distribution of LASSBio-1736 in male Wistar rats. 3. LASSBio-1736 was administered to male Wistar rats at doses of 3.2 mg/kg intravenously and 12.6 mg/kg oral and intraperitoneal. The individual plasma-concentration profiles were determined by HPLC-UV and evaluated by non-compartmental and population pharmacokinetic analysis (Monolix 2016R1, Lixoft). Tissue distribution was evaluated after iv injection of 3.2 mg/kg drug by non-compartmental approach. 4. After intravenous administration, Vdss (1.79 L/kg), t ½ (23.1 h) and CLtot (56.1 mL/h/kg) were determined, and they were statistically similar (α =0.05) to oral and intraperitoneal pharmacokinetic parameters. The plasma profiles obtained after intravenous, oral and intraperitoneal administration of the compound were best fitted to a three-compartment and one-compartment open model with first-order absorption. 5. The intraperitoneal and oral bioavailability were around 40 and 15%, respectively. 6. Liver, spleen and skin tissues showed penetration of 340, 130 and 40%, respectively, with t ½ like plasma values. 7. LASSBio-1736 protein binding was 95 ± 2%. 8. The t ½, CLtot and tissue distribution of the compound agreed with the desired drug characteristics for leishmanicidal activity.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/farmacocinética , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/farmacocinética , Animais , Leishmaniose/sangue , Leishmaniose/tratamento farmacológico , Masculino , Ratos , Ratos Wistar
11.
Clinics ; 73(supl.1): e813s, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974953

RESUMO

Cell cycle control genes are frequently mutated in cancer cells, which usually display higher rates of proliferation than normal cells. Dysregulated mitosis leads to genomic instability, which contributes to tumor progression and aggressiveness. Many drugs that disrupt mitosis have been studied because they induce cell cycle arrest and tumor cell death. These antitumor compounds are referred to as antimitotics. Vinca alkaloids and taxanes are natural products that target microtubules and inhibit mitosis, and their derivatives are among the most commonly used drugs in cancer therapy worldwide. However, severe adverse effects such as neuropathies are frequently observed during treatment with microtubule-targeting agents. Many efforts have been directed at developing improved antimitotics with increased specificity and decreased likelihood of inducing side effects. These new drugs generally target specific components of mitotic regulation that are mainly or exclusively expressed during cell division, such as kinases, motor proteins and multiprotein complexes. Such small molecules are now in preclinical studies and clinical trials, and many are products or derivatives from natural sources. In this review, we focused on the most promising targets for the development of antimitotics and discussed the advantages and disadvantages of these targets. We also highlighted the novel natural antimitotic agents under investigation by our research group, including combretastatins, withanolides and pterocarpans, which show the potential to circumvent the main issues in antimitotic therapy.


Assuntos
Humanos , Produtos Biológicos/química , Antimitóticos/química , Desenvolvimento de Medicamentos/métodos , Antineoplásicos/química , Produtos Biológicos/farmacologia , Antimitóticos/farmacologia , Mitose/efeitos dos fármacos , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia
12.
PLoS One ; 11(10): e0162895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695125

RESUMO

Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma.


Assuntos
Inibidores da Fosfodiesterase 4/farmacologia , Sulfonamidas/farmacologia , Animais , Domínio Catalítico , AMP Cíclico/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Peroxidase de Eosinófilo/metabolismo , Cobaias , Humanos , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Camundongos , Simulação de Acoplamento Molecular/métodos , Contração Muscular/efeitos dos fármacos , Músculo Liso/química , Músculo Liso/efeitos dos fármacos , Peroxidase/metabolismo , Inibidores da Fosfodiesterase 4/síntese química , Isoformas de Proteínas/efeitos dos fármacos , Hipersensibilidade Respiratória/tratamento farmacológico , Sulfonamidas/síntese química , Traqueia/efeitos dos fármacos
13.
Cell Physiol Biochem ; 38(2): 821-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26905925

RESUMO

BACKGROUND/AIMS: Exogenous surfactant has been proposed as adjunctive therapy for acute respiratory distress syndrome (ARDS), but it is inactivated by different factors present in the alveolar space. We hypothesized that co-administration of LASSBio596, a molecule with significant anti-inflammatory properties, and exogenous surfactant could reduce lung inflammation, thus enabling the surfactant to reduce edema and improve lung function, in experimental ARDS. METHODS: ARDS was induced by cecal ligation and puncture surgery in BALB/c mice. A sham-operated group was used as control (CTRL). After surgery (6 hours), CTRL and ARDS animals were assigned to receive: (1) sterile saline solution; (2) LASSBio596; (3) exogenous surfactant or (4) LASSBio596 plus exogenous surfactant (n = 22/group). RESULTS: Regardless of exogenous surfactant administration, LASSBio596 improved survival rate and reduced collagen fiber content, total number of cells and neutrophils in PLF and blood, cell apoptosis, protein content in BALF, and urea and creatinine levels. LASSBio596 plus surfactant yielded all of the aforementioned beneficial effects, as well as increased BALF lipid content and reduced surface tension. CONCLUSION: LASSBio596 exhibited major anti-inflammatory and anti-fibrogenic effects in experimental sepsis-induced ARDS. Its association with surfactant may provide further advantages, potentially by reducing surface tension.


Assuntos
Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/uso terapêutico , Pulmão/efeitos dos fármacos , Ácidos Ftálicos/uso terapêutico , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Tensão Superficial/efeitos dos fármacos
14.
Toxicon ; 94: 29-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25528385

RESUMO

The cyanotoxin cylindrospermopsin (CYN) has lately been reported with a notorious toxicity to mammals. LASSBio-596 is a compound with anti-inflammatory actions. We aimed at evaluating the therapeutic effects of LASSBio-596 in a model of CYN-induced lung injury. Protocol #1: BALB/c mice received intratracheally (i.t.) 50-µL of saline or semi-purified extract of CYN (70 µg/kg). 18 h later, animals that received saline were gavaged with saline (SALSAL) or 50 mg/kg of LASSBio-596 (SALLAS), and mice that received CYN were gavaged with either saline (TOXSAL) or 50 mg/kg of LASSBio-596 (TOXLAS). Pulmonary mechanics was measured 6 h after gavage. Lungs were prepared for histology and inflammatory mediators determination. Protocol #2: Mice received 50-µL of CYN (70 µg/kg, i.t.) and 18 h later were gavaged with saline (NOT TREATED), or 50 mg/kg of LASSBio-596 (TREATED). Survival rates and pulmonary mechanics of the survivors were assessed. CYN exposure increased mechanical components, alveolar collapse, PMN cells and fiber deposition in the lungs, as well as the production of IL-1ß, IL-6 and KC in Protocol #1. LASSBio-596 attenuated those changes. TREATED mice in Protocol #2 presented significantly higher survival rates and tended to improve lung mechanics. Briefly, LASSBio-596 showed positive effects in mice exposed to CYN.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Ácidos Ftálicos/uso terapêutico , Sulfonamidas/uso terapêutico , Uracila/análogos & derivados , Alcaloides , Animais , Anti-Inflamatórios/efeitos adversos , Toxinas Bacterianas , Toxinas de Cianobactérias , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Camundongos Endogâmicos BALB C , Ácidos Ftálicos/efeitos adversos , Sulfonamidas/efeitos adversos , Análise de Sobrevida , Uracila/toxicidade
15.
PLoS One ; 9(3): e85380, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614859

RESUMO

Cancer is the second most common cause of death in the USA. Among the known classes of anticancer agents, the microtubule-targeted antimitotic drugs are considered to be one of the most important. They are usually classified into microtubule-destabilizing (e.g., Vinca alkaloids) and microtubule-stabilizing (e.g., paclitaxel) agents. Combretastatin A4 (CA-4), which is a natural stilbene isolated from Combretum caffrum, is a microtubule-destabilizing agent that binds to the colchicine domain on ß-tubulin and exhibits a lower toxicity profile than paclitaxel or the Vinca alkaloids. In this paper, we describe the docking study, synthesis, antiproliferative activity and selectivity index of the N-acylhydrazone derivatives (5a-r) designed as CA-4 analogues. The essential structural requirements for molecular recognition by the colchicine binding site of ß-tubulin were recognized, and several compounds with moderate to high antiproliferative potency (IC50 values ≤18 µM and ≥4 nM) were identified. Among these active compounds, LASSBio-1586 (5b) emerged as a simple antitumor drug candidate, which is capable of inhibiting microtubule polymerization and possesses a broad in vitro and in vivo antiproliferative profile, as well as a better selectivity index than the prototype CA-4, indicating improved selective cytotoxicity toward cancer cells.


Assuntos
Desenho de Fármacos , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Estilbenos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colchicina/farmacologia , Feminino , Fluoruracila/farmacologia , Humanos , Hidrazonas/química , Ligação de Hidrogênio , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Camundongos Nus , Microtúbulos/metabolismo , Estilbenos/química , Tubulina (Proteína)/metabolismo
16.
Eur J Med Chem ; 71: 1-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269511

RESUMO

Novel 2-chloro-4-anilino-quinazolines designed as EGFR and VEGFR-2 dual inhibitors were synthesized and evaluated for inhibitory effects. EGFR and VEGFR-2 are validated targets in cancer therapy and combined inhibition might be synergistic for both antitumor activity and resistance prevention. The biological data obtained proved the potential of 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors, highlighting compound 8o, which was approximately 7-fold more potent on VEGFR-2 and approximately 11-fold more potent on EGFR compared to the prototype 7. SAR and docking studies allowed the identification of pharmacophoric groups for both kinases and demonstrated the importance of a hydrogen bond donor at the para position of the aniline moiety for interaction with conserved Glu and Asp amino acids in EGFR and VEGFR-2 binding sites.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Eur J Med Chem ; 62: 20-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23353731

RESUMO

Searching for new promising metal-based hits against Trypanosoma cruzi and Leishmania parasites, two related oxidovanadium(IV) N-acylhydrazone complexes, [V(IV)O(LASSBio1064-2H)(H2O)], 1, and [V(IV)O(LASSBio1064-2H)(phen)]·(H2O), 2, where LASSBio1064=(E)-N'-(2-hydroxybenzylidene-4-chlorobenzohydrazide and phen = 1,10-phenanthroline, were synthesized and characterized in the solid state and in solution by elemental analysis, conductimetric measurements and ESI-MS, FTIR, EPR and (51)V NMR spectroscopies and were evaluated on T. cruzi and Leishmania major. In addition, their unspecific cytotoxicity was tested against murine macrophages. Furthermore, to provide insight into the possible mechanism of its antiparasitic action, [VO(LASSbio1064-2H)(phen)].(H2O) was tested for its DNA interaction ability on plasmid DNA by atomic force microscopy (AFM) and on CT DNA by using DNA viscosity measurements and fluorescence spectroscopy. Both complexes were active in vitro against the epimastigote form of T. cruzi (Tulahuen 2 strain) showing IC50 values of the same order or significantly lower than that of the reference trypanosomicidal drug Nifurtimox. However, only the mixed-ligand oxidovanadium(IV) complex 2, which includes phen in its coordination sphere, showed activity on L. major promastigotes with a IC50 value of 22.1 ± 0.6 µM. The compounds show low toxicity on mammalian cells (IC50 > 100 µM). DNA interaction studies showed that the mixed-ligand complex is able to interact with this biomolecule probably through an intercalative mode, pointing out at DNA as a potential target in the parasite. The results suggest that [V(IV)O(LASSBio1064-2H)(phen)]·(H2O) may be a promising compound for further drug development stages.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Hidrazonas/química , Leishmania/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Vanádio/química , Animais , Antiparasitários/síntese química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
18.
Molecules ; 17(12): 14651-72, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23222927

RESUMO

In this paper we report the design, synthesis and pharmacological evaluation of a new series of phenyl sulfonamide derivatives 2a-h and 3-8 planned by structural modification on the anti-inflammatory prototype LASSBio-468 (1). Among the synthesized analogues, the tetrafluorophthalimide LASSBio-1439 (2e) stands out showing an in vitro anti-TNF-α effect similar to the standard thalidomide. The relevance of tetrafluorination of the phthalimide nucleus was also confirmed by the anti-inflammatory profile of 2e, through oral administration, in a murine model of pulmonary inflammation. The corresponding tetrafluorocarboxyamide metabolite LASSBio-1454 (15), generated from partial hydrolysis of the derivative 2e, presented a significant in vitro effect and a pronounced anti-inflammatory activity in vivo.


Assuntos
Ftalimidas , Pneumonia , Sulfonamidas , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Isoindóis/química , Isoindóis/uso terapêutico , Lipopolissacarídeos/toxicidade , Camundongos , Ftalimidas/administração & dosagem , Ftalimidas/síntese química , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/síntese química , Sulfonamidas/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
19.
Eur J Med Chem ; 54: 264-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22647219

RESUMO

p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-α production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Ureia/síntese química , Ureia/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Carragenina/farmacologia , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Feminino , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/análogos & derivados , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/biossíntese , Ureia/análogos & derivados , Ureia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/química
20.
Fundam Clin Pharmacol ; 26(6): 690-700, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22066694

RESUMO

LASSBio-985 is a sulfonamide compound designed as a simplified structure of a nonselective phosphodiesterase type 4 (PDE-4) inhibitor that promotes vasodilatory activity in vitro. PDE are enzymes responsible for the hydrolysis of cyclic adenosine 3',5'- monophosphate and cyclic guanosine 3',5'-monophosphate. Five different isozymes of PDE are found in vascular smooth muscle (PDE1-PDE5). Aortic rings, with or without endothelium, from male normotensive and spontaneously hypertensive rats (SHR) were prepared for isometric tension recording. Blood pressure was measured in Wistar Kyoto (WKY) rats and SHR during intravenous infusion of LASSBio-985 (10 mg/kg/min) during 15 min. LASSBio-985 induced a concentration-dependent vasodilation in aortic rings from normotensive and SHR, which was almost completely inhibited in endothelium-denuded vessels. Vasodilatory activity was also reduced in endothelium-intact aortic rings that had been pretreated with N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME), a nitric oxide synthase inhibitor and 1H-[1,2,4]oxadiazolod[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor. LASSBio-985-induced vasodilation was also inhibited by sildenafil (100 µm) and SQ 22536, a PDE5 inhibitor and adenylate cyclase inhibitor, respectively. To evaluate the involvement of some endothelial receptors, atropine, diphenhydramine, HOE 140, naloxone, propranolol, indomethacin, and wortmannin were tested, but none inhibited the effects of LASSBio-985. The residual effect observed on endothelium-denuded aortic rings was abolished by nicardipine, a voltage-sensitive-Ca(2+)-channel blocker. Intravenous infusion of LASSBio-985 (10 mg/kg/min) significantly reduced systolic and diastolic pressures in both WKY and SHR. LASSBio-985 is a compound with vasodilatory activity, which could be consequent to PDE1 inhibition and voltage-sensitive-Ca(2+)-channel blockade.


Assuntos
Anti-Hipertensivos/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Hipertensão/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Sulfonamidas/uso terapêutico , Vasodilatadores/uso terapêutico , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Técnicas In Vitro , Masculino , Estrutura Molecular , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/fisiopatologia , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacocinética , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Sulfonamidas/administração & dosagem , Sulfonamidas/química , Sulfonamidas/farmacologia , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Vasodilatadores/química , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA