Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(32): 15236-15246, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39066707

RESUMO

Nitriles and isonitriles are important σ-donor ligands in coordination chemistry. Isonitriles also function in low-valent complexes as π-acceptor ligands similar to CO. Herein we present the unusual behavior of the highly reducing, high-spin iron(I) complex [Fe(hmds)2]- toward these compound classes. Rare examples of side-on coordination of nitriles to the metal center are observed. Insights gained by 57Fe Mössbauer spectroscopy as well as DFT and CASSCF calculations give an interplay between the resonance structures of not only an iron(I) π-complex and an iron(III) metallacycle but also point to the importance of an iron(II) nitrile radical anion. For an aromatic isonitrile end-on coordination is observed, which is best described as an iron(I) complex with only minor unpaired spin transfer onto the isonitrile. For aliphatic isonitriles, the selective R-CN bond cleavage occurs and yields stoichiometric mixtures of alkyl iron(II) and cyanido iron(II) complexes. Attempts to isolate presumed (iso)nitrile radical anions void of 3d-metal coordination give for the reaction of an aromatic isonitrile with KC8 facile reductive coupling to the corresponding diamido acetylene.

2.
Angew Chem Int Ed Engl ; 62(19): e202218141, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757051

RESUMO

The open-shell cationic stannylene-iron(0) complex 4 (4=[PhiP DippSn⋅Fe⋅IPr]+ ; PhiP Dipp={[Ph2 PCH2 Si(i Pr)2 ](Dipp)N}; Dipp=2,6-i Pr2 C6 H3 ; IPr=[(Dipp)NC(H)]2 C:) cooperatively and reversibly cleaves dihydrogen at the Sn-Fe interface under mild conditions (1.5 bar, 298 K), in forming bridging hydrido-complex 6. The One-electron oreduction of the related GeII -Fe0 complex 3 leads to oxidative addition of one C-P linkage of the PhiP Dipp ligand in an intermediary Fe-I complex, leading to FeI phosphide species 7. One-electron reduction reaction of 4 gives access to the iron(-I) ferrato-stannylene, 8, giving evidence for the transient formation of such a species in the reduction of 3. The covalently bound tin(II)-iron(-I) compound 8 has been characterised through EPR spectroscopy, SQUID magnetometry, and supporting computational analysis, which strongly indicate a high localization of electron spin density at Fe-I in this unique d9 -iron complex.

3.
Angew Chem Int Ed Engl ; 62(10): e202209437, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541062

RESUMO

Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Šwere attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (µ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-µ-O bonds. A ≈2.5 ŠFe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (µ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.


Assuntos
Ferro , Oxigênio , Ferro/química , Análise Espectral , Cristalografia por Raios X , Oxigênio/química , Oxirredução
4.
Chemistry ; 28(63): e202202016, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35851723

RESUMO

The pentafluoroorthotellurate group (teflate, OTeF5 ) is able to form species, for which only the fluoride analogues are known. Despite nickel fluorides being widely investigated, nickel teflates have remained elusive for decades. By reaction of [NiCl4 ]2- and neat ClOTeF5 , we have synthesized the homoleptic [Ni(OTeF5 )4 ]2- anion, which presents a distorted tetrahedral structure, unlike the polymeric [NiF4 ]2- . This high-spin complex has allowed the study of the electronic properties of the teflate group, which can be classified as a weak/medium-field ligand, and therefore behaves as the fluoride analogue also in ligand-field terms. The teflate ligands in [NEt4 ]2 [Ni(OTeF5 )4 ] are easily substituted, as shown by the formation of [Ni(NCMe)6 ][OTeF5 ]2 by dissolving it in acetonitrile. Nevertheless, careful reactions with other conventional ligands have enabled the crystallization of nickel teflate complexes with different coordination geometries, i.e. [NEt4 ]2 [trans-Ni(OEt2 )2 (OTeF5 )4 ] or [NEt4 ][Ni(bpyMe2 )(OTeF5 )3 ].

5.
Chemistry ; 28(25): e202200404, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35213074

RESUMO

Frustrated Lewis pairs (FLPs) composed of acidic alane and basic phosphane functions, separated by a xanthene linker, can be prepared through the corresponding Me3 Sn derivative and methyl aluminum compounds with elimination of Me4 Sn. This way MeClAl-, Cl2 Al- and (C6 F5 )2 Al- moieties could be introduced and the resulting FLPs are stabilized by a further equivalent of the alane precursors. In contact with the FLPs CO2 is bound via the C atom at the phosphane functions and the two O atoms at the Al centers. The residues at the latter determine the binding strength. Hence, in case of MeClAl CO2 capture occurs at higher pressure and under ambient conditions CO2 is released again, while for Cl2 Al and (C6 F5 )2 Al CO2 binding becomes irreversible. The results of DFT calculations rationalize these findings by the high thermodynamic stabilization in case of more electronegative residues, which concomitantly lead to higher barriers, and in case of (C6 F5 )2 Al further stabilization is achieved through a low reorganization energy.

6.
Chemistry ; 27(67): 16760-16767, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569676

RESUMO

Carbonyl and iminyl based radical anions are reactive intermediates in a variety of transformations in organic synthesis. Herein, the isolation of ketyl, and more importantly unprecedented ketiminyl and aldiminyl radical anions coordinated to cobalt and iron complexes is presented. Insights into the electronic structure of these unusual metal bound radical anions is provided by X-Ray diffraction analysis, NMR, IR, UV/Vis and Mössbauer spectroscopy, solid and solution state magnetometry, as well as a by a detailed computational analysis. The metal bound radical anions are very reactive and facilitate the activation of intra- and intermolecular C-H bonds.

7.
Inorg Chem ; 60(18): 13844-13853, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33770441

RESUMO

The heteroleptic (formazanato)nickel bromide complex LNi(µ-Br)2NiL [LH = Mes-NH-N═C(p-tol)-N═N-Mes] has been prepared by deprotonation of LH with NaH followed by reaction with NiBr2(dme). Treatment of this complex with KC8 led to transformation of the formazanate into azoiminate ligands via N-N bond cleavage and the simultaneous release of aniline. At the same time, the potentially resulting intermediate complex L'2Ni [L' = HN═C(p-tol)-N═N-Mes] was reduced by one additional electron, which is delocalized across the π system and the metal center. The resulting reduced complex [L'2Ni]K(18-c-6) has a S = 1/2 ground state and a square-planar structure. It reacts with dioxygen via one-electron oxidation to give the complex L'2Ni, and the formation of superoxide was detected spectroscopically. If oxidizable substrates are present during this process, these are oxygenated/oxidized. Triphenylphosphine is converted to phosphine oxide, and hydrogen atoms are abstracted from TEMPO-H and phenols. In the case of cyclohexene, autoxidations are triggered, leading to the typical radical-chain-derived products of cyclohexene.

8.
Magn Reson Med ; 85(6): 3370-3382, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33538352

RESUMO

PURPOSE: Low molecular weight iron(III) complex-based contrast agents (IBCA) including iron(III) trans-cyclohexane diamine tetraacetic acid [Fe(tCDTA)]- could serve as alternatives to gadolinium-based contrast agents in MRI. In search for IBCA with enhanced properties, we synthesized derivatives of [Fe(tCDTA)]- and compared their contrast effects. METHODS: Trans-cyclohexane diamine tetraacetic acid (tCDTA) was chemically modified in 2 steps: first the monoanhydride of Trans-cyclohexane diamine tetraacetic acid was generated, and then it was coupled to amines in the second step. After purification, the chelators were analyzed by high-performance liquid chromatography, mass spectrometry, and NMR spectrometry. The chelators were complexed with iron(III), and the relaxivities of the complexes were measured at 0.94, 1.5, 3, and 7 Tesla. Kinetic stabilities of the complexes were analyzed spectrophotometrically and the redox properties by cyclic voltammetry. RESULTS: Using ethylenediamine (en) and trans-1,4-diaminocyclohexane, we generated monomers and dimers of tCDTA: en-tCDTA, en-tCDTA-dimer, trans-1,4-diaminocyclohexane-tCDTA, and trans-1,4-diaminocyclohexane-tCDTA-dimer. The iron(III) complexes of these derivatives had similarly high stabilities as [Fe(tCDTA)]- . The iron(III) complexes of the trans-1,4-diaminocyclohexane derivatives had higher T1 relaxivities than [Fe(tCDTA)]- that increased with increasing magnetic field strengths and were highest at 6.8 L·mmol-1 ·s-1 per molecule for the dimer. Remarkably, the relaxivity of [Fe(en-tCDTA)]+ had a threefold increase from neutral pH toward pH6. CONCLUSION: Four iron(III) complexes with similar stability in comparison to [Fe(tCDTA)]- were synthesized. The relaxivities of trans-1,4-diaminocyclohexane-tCDTA and trans-1,4-diaminocyclohexane-tCDTA-dimer complexes were in the same range as gadolinium-based contrast agents at 3 Tesla. The [Fe(en-tCDTA)]+ complex is a pH sensor at weakly acidic pH levels, which are typical for various cancer types.


Assuntos
Meios de Contraste , Ferro , Concentração de Íons de Hidrogênio , Campos Magnéticos , Imageamento por Ressonância Magnética
9.
Chem Commun (Camb) ; 57(7): 875-878, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33393537

RESUMO

Reduction of ß-diketiminato nickel(ii) complexes (LtBuNiII) to the corresponding nickel(i) compounds does not require alkali metal compounds but can also be performed with the milder cobaltocenes. LtBuNiBr and Cp2Co have rather similar redox potentials, so that the equilibrium with the corresponding electron transfer compound [LtBuNiIBr][Cp2CoIII] (ETC) clearly lies on the side of the starting materials. Still, the ETC portion can be used to activate CO2 yielding a mononuclear nickel(ii) carbonate complex and ETC can be isolated almost quantitatively from the solutions through crystallisation. The more negative reduction potential of Cp*2Co shifts the equilibrium formed with LtBuNiBr strongly towards the ETC and accordingly the reaction of such solutions with CO2 is much faster.

10.
Angew Chem Int Ed Engl ; 60(5): 2312-2321, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084156

RESUMO

The complexes [LtBu Ni(OCO-κ2 O,C)]M3 [N(SiMe3 )2 ]2 (M=Li, Na, K), synthesized by deprotonation of a nickel formate complex [LtBu NiOOCH] with the corresponding amides M[N(SiMe3 )2 ], feature a NiII -CO2 2- core surrounded by Lewis-acidic cations (M+ ) and the influence of the latter on the behavior and reactivity was studied. The results point to a decrease of CO2 activation within the series Li, Na, and K, which is also reflected in the reactivity with Me3 SiOTf leading to the liberation of CO and formation of a Ni-OSiMe3 complex. Furthermore, in case of K+ , the {[K3 [N(SiMe3 )2 ]2 }+ shell around the Ni-CO2 2- entity was shown to have a large impact on its stabilization and behavior. If the number of K[N(SiMe3 )2 ] equivalents used in the reaction with [LtBu NiOOCH] is decreased from 3 to 0.5, the deprotonated part of the precursor enters a complex reaction sequence with formation of [LtBu NiI (µ-OOCH)NiI LtBu ]K and [LtBu Ni(C2 O4 )NiLtBu ]. The same reaction at higher concentrations additionally led to the formation of a unique hexanuclear NiII complex containing both oxalate and mesoxalate ([O2 C-CO2 -CO2 ]4- ) ligands.

11.
Chemistry ; 26(51): 11851-11861, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432367

RESUMO

The design of biomimetic model complexes for the cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO) is reported, where the 3-His coordination of the iron ion is simulated by three pyrazole donors of a trispyrazolyl borate ligand (Tp) and protected cysteine and cysteamine represent substrate ligands. It is found that the replacement of phenyl groups-attached at the 3-positions of the pyrazole units in a previous model-by mesityl residues has massive consequences, as the latter arrange to a more spacious reaction pocket. Thus, the reaction with O2 proceeds much faster and afterwards the first structural characterization of an iron(II) η2 -O,O-sulfinate product became possible. If one of the three Tp-mesityl groups is placed in the 5-position, an even larger reaction pocket results, which leads to yet faster rates and accumulation of a reaction intermediate at low temperatures, as shown by UV/Vis and Mössbauer spectroscopy. After comparison with the results of investigations on the cobalt analogues this intermediate is tentatively assigned to an iron(III) superoxide species.


Assuntos
Cisteamina/química , Cisteína Dioxigenase/química , Cisteína/química , Dioxigenases/química , Superóxidos/química , Biomimética , Boratos/química , Cobalto/química , Cristalografia por Raios X , Cisteína Dioxigenase/metabolismo , Dioxigenases/metabolismo , Ferro/química , Ligantes , Pirazóis
12.
Angew Chem Int Ed Engl ; 58(3): 902-906, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30351527

RESUMO

Even though aluminas and aluminosilicates have found widespread application, a consistent molecular understanding of their surface heterogeneity and the behavior of defects resulting from hydroxylation/dehydroxylation remains unclear. Here, we study the well-defined molecular model compound, [Al3 (µ2 -OH)3 (THF)3 (PhSi(OSiPh2 O)3 )2 ], 1, to gain insight into the acid-base reactivity of cyclic trinuclear Al3 (µ2 -OH)3 moieties at the atomic level. We find that, like zeolites, they are sufficiently acidic to catalyze the isomerization of olefins. DFT and gas phase vibrational spectroscopy on solvent-free and deprotonated 1 show that the six-membered ring structure of its Al3 (µ2 -OH)3 core is unstable with respect to deprotonation of one of its hydroxy groups and rearranges into two edge-sharing four-membered rings. This renders AlIV -O(H)-AlIV units strong acid sites, and all results together suggest that their acidity is similar to that of zeolitic SiIV -O(H)-AlIV groups.

13.
Angew Chem Int Ed Engl ; 57(24): 7230-7233, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29637677

RESUMO

Reduced CO2 species are key intermediates in a variety of natural and synthetic processes. In the majority of systems, however, they elude isolation or characterisation owing to high reactivity or limited accessibility (heterogeneous systems), and their formulations thus often remain uncertain or are based on calculations only. We herein report on a Ni-CO22- complex that is unique in many ways. While its structural and electronic features help understand the CO2 -bound state in Ni,Fe carbon monoxide dehydrogenases, its reactivity sheds light on how CO2 can be converted into CO/CO32- by nickel complexes. In addition, the complex was generated by a rare example of formate ß-deprotonation, a mechanistic step relevant to the nickel-catalysed conversion of Hx COyz- at electrodes and formate oxidation in formate dehydrogenases.

14.
Dalton Trans ; 46(47): 16412-16418, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28967014

RESUMO

Reaction of FeX2(thf)n (X = Cl n = 1.5, Br n = 2) with the chelating 1,1'-bis(silylenyl)-substituted ferrocene ligand SiFcSiA (Fc = ferrocendiyl, Si = PhC(NtBu)2Si:) furnishes the corresponding dihalido Fe(ii) complexes [(SiFcSi)FeX2] (X = Cl, 1 and X = Br, 2) in high yields. Reduction of the latter with an excess of KC8 in the presence of benzene and toluene leads to the unprecedented bis(silylene) stabilized Fe0 complexes [(SiFcSi)Fe-η6(C6H6)] 3 and [(SiFcSi)Fe-η6(C7H8)] 4, respectively. The 57Fe Mössbauer spectrum of 3 at 13 K exhibits parameters (σ = 0.3676 mm s-1; ΔEQ = 1.334 mm s-1) which are consistent with the presence of a pentacoordinated Fe0 atom in a pseudo trigonal-bipyramidal coordination environment, with two dative Si→Fe bonds and three coordination sites occupied by the η6-coordinated arene ligand. Results from DFT calculations, 57Fe Mössbauer parameters and the diamagnetic NMR spectra confirm the redox-innocent nature of these ligands and the zero oxidation state of the iron center. The catalytic ability of 3 was investigated with respect to ketone hydrogenation. In all cases, good to excellent yields to the corresponding alcohols were obtained at 50 °C and 50 bar H2 pressure. Electron-donating as well as -withdrawing substituents were tolerated with excellent to good yields. Conversions of bulkier ketones and unactivated aliphatic ketones lead merely to moderate yields. This represents the first example of a silylene-iron metal complex which has been utilized as a highly active precatalyst in the hydrogenation of ketones. The results underline the powerful ability of chelating bis(N-heterocyclic silylene) ligands acting as strong σ-donor ligands in stabilizing a new generation of low-valent, electron-rich transition metal complexes for catalytic transformations.

15.
J Am Chem Soc ; 139(12): 4233-4242, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28170243

RESUMO

The activation and selective transformation of virtually inexhaustible or easy-to-generate chemicals like N2, O2, CO2, CO, H2, or methane gas to value-added products is a lively area of current research, because of its economic relevance as well as its huge ecological impact. Biologists and chemists have put forth a lot of effort toward understanding and modeling the mechanisms of biological small-molecule activation, and in several catalytic cycles proposed for nickel-containing enzymes, nickel(I) plays a key role. In recent years also in synthetic chemistry the huge potential of complex nickel(I) units for the activation and transformation of small molecules has been discovered and exploited. This Perspective highlights some representative examples of nickel(I)-based small-molecule activation, intending to establish awareness of the competencies and scope of nickel(I) compounds.

16.
Angew Chem Int Ed Engl ; 56(9): 2307-2311, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28111896

RESUMO

In metal-mediated O2 activation, nickel(II) compounds hardly play a role, but recently it has been shown that enzymes can use nickel(II) for O2 activation. Now a low-coordinate Lewis acidic nickel(II) complex has been synthesized that reacts with O2 to give a nickel(II) organoperoxide, as proposed for the enzymatic system. Its formation was studied further by UV/Vis absorption spectroscopy, leading to the observation of a short-lived intermediate that proved to be reactive in both oxygen atom transfer and hydrogen abstraction reactions, while the peroxide efficiently transfers O atoms. Both for the enzyme and for the functional model, the key to O2 activation is proposed to represent a concomitant electron shift from the substrate/co-ligand.

17.
Angew Chem Int Ed Engl ; 55(40): 12325-9, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27384019

RESUMO

To gain molecular level insights into the properties of certain functions and units of extended oxides/hydroxides, suitable molecular model compounds are needed. As an attractive route to access such compounds the trapping of early intermediates during the hydrolysis of suitable precursor compounds with the aid of stabilizing ligands is conceivable, which was tested for the aluminum(III)/water system. Indeed, trisilanols proved suitable trapping reagents: their presence during the hydrolysis of Al(i) Bu2 H in dependence on the amount of water used allowed for the isolation of tri- and octanuclear aluminum hydroxide cluster complexes [Al3 (µ2 -OH)3 (THF)3 (PhSi(OSiPh2 O)3 )2 ] (1) and [Al8 (µ3 -OH)2 (µ2 -OH)10 (THF)3 (p-anisylSi(OSiPh2 O)3 )4 ] (2). 1 can be regarded as the Al(OH)3 cyclic trimer, where six protons have been replaced by silyl residues. While 2 features a unique [Al8 (µ3 -OH)2 (µ2 -OH)10 ](12+) core. In contrast to most other known aggregates of this type, 1 and 2 can be readily prepared at reasonable scales, dissolve in common solvents, and retain an intact framework even in the presence of excessive amounts of water. This finding paves the way to future research addressing the reactivity of the individual functional groups.

18.
Dalton Trans ; 45(7): 2989-96, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26757878

RESUMO

After lithiation of PYR-H2 (PYR = [(NC(Me)C(H)C(Me)NC6H3(iPr)2)2(C5H3N)](2-)) - the precursor of an expanded ß-diketiminato ligand system with two binding pockets - with KN(TMS)2 the reaction of the resulting potassium salt with FeBr2 led to a dinuclear iron(ii) bromide complex [(PYR)Fe(µ-Br)2Fe] (1). Through treatment with KHBEt3 the bromide ligands could be replaced by hydrides to yield [PYR)Fe2(µ-H)2] (2), a distorted analogue of known ß-diketiminato iron hydride complexes, as evidenced by NMR, Mößbauer and X-ray absorption spectroscopy, as well as by its reactivity: for instance, 2 reacts with the proton source lutidinium triflate via protonation of the hydride ligands to form an iron(ii) product [(PYR)Fe2(OTf)2] (4), while CO2 inserts into the Fe-H bonds generating the formate complex [(PYR)Fe2(µ-HCOO)2] (5); in the presence of traces of water partial hydrolysis occurs so that [(PYR)Fe2(µ-OH)(µ-HCOO)] (6) is isolated. Altogether, the iron(ii) chemistry supported by the PYR(2-) ligand is distinctly different from the one of nickel(ii), where both, the arrangement of the two binding pockets and the additional pyridyl donor led to diverging features as compared with the corresponding system based on the parent ß-diketiminato ligand.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Compostos Ferrosos/química , Ferro/química , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Espectroscopia de Mossbauer
19.
Acc Chem Res ; 48(10): 2734-43, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26305516

RESUMO

Mononuclear, O2-activating nonheme iron enzymes are a fascinating class of metalloproteines, capable of realizing the most different reactions, ranging from C-H activation, via O atom transfer to C-C bond cleavage, in the course of O2 activation. They can lead us the way to achieve similar reactions with comparable efficiency and selectivity in chemical laboratories, which would be highly desirable aiming at accessing value-added products or to achieve degradation of unwanted compounds. Hence, these enyzmes motivate attempts to construct artificial low-molecular weight analogues, mimicking structural or functional characteristics. Such models can, for instance, provide insights about which of the features inherent to an active site are essential and guarantee the enzyme function, and from this kind of information the minimal requirements for a biomimetic or bioinspired complex that may be applied in catalysis can be derived. On the other hand, they can contribute to an understanding of the enzyme functioning. In order to create such replicates, it is important to faithfully mimic the surroundings of the iron centers in their active sites. Most of them feature two histidine residues and one carboxylate donor, while a few exhibit a deceptively simple (His)3Fe active site. For the simulation of these, the trispyrazolyl borate ligand (Tp) particularly offers itself, as the facial arrangement of three pyrazole donors is reminiscent of the three histidine-derived imidazole donors. The focus of this Account will be on bioinorganic/biomimetic research from our laboratory utilizing Tp ligands to develop molecular models for (i) two representatives of the (His)3Fe-enzyme family, namely, the cysteine dioxygenase (CDO) and acetyl acetone dioxygenase (Dke1), (ii) a related but less well-explored variant of the CDO-the 2-aminoethanethiol dioxygenase-as well as (iii) the 2-His-1-carboxylate representative 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). The CDO catalyzes the dioxygenation of cysteine with O2 to give cysteine sulfinic acid, which could be mimicked at TpFe units in a realistic manner. Furthermore, the successful dioxygenation of 2-aminoethanethiol at the same complex metal fragments lends further support to the hypothesis that the active sites of CDO and the one of 2-aminoethanethiol dioxygenase, whose structure is unknown, are quite similar. Dke1 is capable of cleaving diketones and ketoesters to give the corresponding carboxylic acids and α-keto aldehydes, and Tp-based models have achieved comparable C-C bond cleavage reactions. The ACCO develops ethylene from ACC in the course of oxidation, and recently this has been achieved the first time for a TpFe model, too.


Assuntos
Biomimética , Boratos/química , Pirazóis/química , Cisteína Dioxigenase/metabolismo , Dioxigenases/metabolismo , Ligantes
20.
Chemistry ; 21(20): 7470-9, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25823421

RESUMO

Cysteine dioxygenase is a unique nonheme iron enzyme that is involved in the metabolism of cysteine in the body. It contains an iron active site with an unusual 3-His ligation to the protein, which contrasts with the structural features of common nonheme iron dioxygenases. Recently, some of us reported a truly biomimetic model for this enzyme, namely a trispyrazolylborato iron(II) cysteinato complex, which not only has a structure very similar to the enzyme-substrate complex but also represents a functional model: Treatment of the model with dioxygen leads to cysteine dioxygenation, as shown by isolating the cysteine part of the product in the course of the work-up. However, little is known on the conversion mechanism and, so far, not even the structure of the actual product complex had been characterised, which is also unknown in case of the enzyme. In a multidisciplinary approach including density functional theory calculations and X-ray absorption spectroscopy, we have now determined the structure of the actual sulfinato complex for the first time. The Cys-SO2 (-) functional group was found to be bound in an η(2) -O,O-coordination mode, which, based on the excellent resemblance between model and enzyme, also provides the first support for a corresponding binding mode within the enzymatic product complex. Indeed, this is again confirmed by theory, which had predicted a η(2) -O,O-binding mode for synthetic as well as the natural enzyme.


Assuntos
Cisteína Dioxigenase/química , Cisteína/análogos & derivados , Compostos Ferrosos/química , Ferro/química , Biomimética , Catálise , Cristalografia por Raios X , Cisteína/química , Cisteína Dioxigenase/metabolismo , Modelos Moleculares , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA