Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 524: 113587, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040192

RESUMO

Immunophenotyping has been the primary assay for characterization of immune cells from patients undergoing therapeutic treatments in clinical research, which is critical for understanding disease progression and treatment efficacy. Currently, flow cytometry has been the dominant methodology for characterizing surface marker expression for immunological research. Flow cytometry has been proven to be an effective and efficient method for immunophenotyping, however, it requires highly trained users and a large time commitment. Recently, a novel image cytometry system (Cellaca® PLX Image Cytometer, Revvity Health Sciences, Inc., Lawrence, MA) has been developed as a complementary method to flow cytometry for performing rapid and high-throughput immunophenotyping. In this work, we demonstrated an image cytometric screening method to characterize immune cell populations, streamlining the analysis of routine surface marker panels. The T cell, B cell, NK cell, and monocyte populations of 46 primary PBMC samples from subjects enrolled in autoimmune and oncological disease study cohorts were analyzed with two optimized immunophenotyping staining kits: Panel 1 (CD3, CD56, CD14) and Panel 2 (CD3, CD56, CD19). We validated the proposed image cytometry method by comparing the Cellaca® PLX and the AuroraTM flow cytometer (Cytek Biosciences, Fremont, CA). The image cytometry system was employed to generate bright field and fluorescent images, as well as scatter plots for multiple patient PBMC samples. In addition, the image cytometry method can directly determine cell concentrations for downstream assays. The results demonstrated comparable CD3, CD14, CD19, and CD56 cell populations from the primary PBMC samples, which showed an average of 5% differences between flow and image cytometry. The proposed image cytometry method provides a novel research tool to potentially streamline immunophenotyping workflow for characterizing patient samples in clinical studies.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , Imunofenotipagem , Células Matadoras Naturais , Citometria de Fluxo/métodos , Antígenos CD19 , Citometria por Imagem
2.
Am J Physiol Heart Circ Physiol ; 322(5): H806-H818, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333118

RESUMO

Angiogenesis is necessary for wound healing, tumorigenesis, implant inosculation, and homeostasis. In each situation, matrix structure and mechanics play a role in determining whether new vasculatures can establish transport to new or hypoxic tissues. Neovessel growth and directional guidance are sensitive to three-dimensional (3-D) matrix anisotropy and density, although the individual and integrated roles of these matrix features have not been fully recapitulated in vitro. We developed a tension-based method to align 3-D collagen constructs seeded with microvessel fragments in matrices of three levels of collagen fibril anisotropy and two levels of collagen density. The extent and direction of neovessel growth from the parent microvessel fragments increased with matrix anisotropy and decreased with density. The proangiogenic effects of anisotropy were attenuated at higher matrix densities. We also examined the impact of matrix anisotropy in an experimental model of neovessel invasion across a tissue interface. Matrix density was found to dictate the success of interface crossing, whereas interface curvature and fibril alignment were found to control directional guidance. Our findings indicate that complex configurations of matrix density and alignment can facilitate or complicate the establishment or maintenance of vascular networks in pathological and homeostatic angiogenesis. Furthermore, we extend preexisting methods for tuning collagen anisotropy in thick constructs. This approach addresses gaps in tissue engineering and cell culture by supporting the inclusion of large multicellular structures in prealigned constructs.NEW & NOTEWORTHY Matrix anisotropy and density have a considerable effect on angiogenic vessel growth and directional guidance. However, the current literature relies on 2-D and simplified models of angiogenesis (e.g., tubulogenesis and vasculogenesis). We present a method to align 3-D collagen scaffolds embedded with microvessel fragments to different levels of anisotropy. Neovessel growth increases with anisotropy and decreases with density, which may guide angiogenic neovessels across tissue interfaces such as during implant inosculation and tumorigenesis.


Assuntos
Colágeno , Neovascularização Fisiológica , Anisotropia , Carcinogênese , Matriz Extracelular/química , Humanos , Morfogênese , Neovascularização Patológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA