Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes Res Clin Pract ; 206: 111012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967586

RESUMO

BACKGROUND: Diabetes mellitus erectile dysfunction (DMED) is one of common complications of diabetes. We aimed to investigate the potential efficacy of methyl protodioscin (MPD) in DMED and explored the underlying mechanism. METHODS: Diabetic mice were induced by streptozotocin, while vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were stimulated with high glucose. MPD was administrated in vitro and in vivo to verify its efficacy on DMED. The interaction of c-Myc and AKAP12 was determined by luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS: c-Myc and AKAP12 were upregulated in penile tissues in DMED mice. In high glucose-stimulated VSMCs or VECs, MPD intervention enhanced cell viability, inhibited apoptosis, decreased c-Myc and AKAP12, as well as elevated p-eNOS Ser1177. MPD-induced apoptosis inhibition, AKAP12 reduction and p-eNOSSer1177 elevation were reversed by AKAP12 overexpression. c-Myc functioned as a positive regulator of AKAP12. Overexpression of c-Myc reversed the effects induced by MPD in vitro, which was neutralized by AKAP12 silencing. MPD ameliorated erectile function in diabetic mice via inhibiting AKAP12. CONCLUSIONS: MPD improved erectile dysfunction in streptozotocin-caused diabetic mice by regulating c-Myc/AKAP12 pathway, indicating that MPD could be developed as a promising natural agent for the treatment of DMED.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Masculino , Ratos , Humanos , Camundongos , Animais , Disfunção Erétil/etiologia , Disfunção Erétil/genética , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Estreptozocina , Ratos Sprague-Dawley , Glucose , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo
2.
Front Bioeng Biotechnol ; 11: 1132192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937750

RESUMO

Osteosarcoma remains a worldwide concern due to the poor effectiveness of available therapies in the clinic. Therefore, it is necessary to find a safe and effective therapy to realize the complete resection of osteosarcoma and reconstruction of the bone defect. Magnetic hyperthermia based on magnetic nanoparticles can kill tumor cells by raising the temperature without causing the side effects of conventional cancer treatments. This research aims to design a high-performance magnetic hydrogel composed of gelatin methacrylate and highly magnetic cobalt ferrite (CFO) nanoparticles for osteosarcoma treatment. Specifically, CFO is surface functionalized with methacrylate groups (MeCFO). The surface modified CFO has good biocompatibility and stable solution dispersion ability. Afterward, MeCFO nanoparticles are incorporated into GelMA to fabricate a three-dimensional (3D) printable MeCFO/GelMA magnetic hydrogel and then photocross-linked by UV radiation. MeCFO/GelMA hydrogel has high porosity and swelling ability, indicating that the hydrogel possesses more space and good hydrophily for cell survival. The rheological results showed that the hydrogel has shear thinning property, which is suitable as a bioprinting ink to produce desired structures by a 3D printer. Furthermore, 50 µg/mL MeCFO not only decreases the cell activity of osteosarcoma cells but also promotes the osteogenic differentiation of mBMSCs. The results of the CCK-8 assay and live/dead staining showed that MeCFO/GelMA hydrogel had good cytocompatibility. These results indicated that MeCFO/GelMA hydrogel with potential antitumor and bone reconstruction functions is a promising therapeutic strategy after osteosarcoma resection.

3.
J Environ Public Health ; 2022: 4649614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570783

RESUMO

Most medicines are coming with toxic and detrimental side effects. In addition, microbials are resisting the medicine. Therefore, alternative drugs with low toxic and side effects and low microbial resistance are needed. Plants offer good potential candidates due to a broad range of chemicals they contain. These chemicals have been studied, and research is still going on to probe chemical properties of plant chemicals. In China, traditional Chinese medicine is practised, whereby plant extracts are obtained, and then sold in packages for reasons like memory enhancement, cancer treatment, boosting immune system, and so on. Among the herbs cultivated in China is Polygonati rhizoma (PGR). This plant contains various bioflavonoids such as diosgenin, kaempferol, catechin, daidzein, and 3'-methoxydaidzein. In this review, we discussed the pharmacological effects of these chemicals, including luteolin antimicrobial activity in a manner that it circumvents antibiotic resistance; rutin antivenom property; kaempferol as an agent that mitigates neuropathic pain; genistein anticancer property; isorhamnetin's ability to alleviate chronic obstructive pulmonary diseases (COPD); proanthocyanidins' ability to deal with diabetic neuropathy and analgesic property of catechin.


Assuntos
Catequina , Flavonoides , Flavonoides/farmacologia , Quempferóis/farmacologia , Medicina Tradicional Chinesa , China
4.
Biomed Mater ; 17(3)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35395653

RESUMO

Recently, biofunctional ions (Mg2+, Si4+, etc) and graphene derivatives are proved to be promising in stimulating bone formation. In this study, a novel inorganic/organic composite porous scaffold based on silk fibroin (SF), graphene oxide (GO), and calcium magnesium silicate (CMS) was developed for bone repair. The porous scaffolds obtained by lyophilization showed a little difference in pore structure while GO and CMS displayed a good interaction with SF matrix. The addition of CMS with good mineralization potential and sustainedly release ability of biofunctional ions (Ca2+, Mg2+and Si4+) increased the strength of SF scaffolds a little and facilitated the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by upregulating bone formation-related genes (ALP, COL1, OC and Runx2). The further incorporation of GO in SF scaffolds enhanced the compressive strength and water retention, and also remarkably promoted the osteogenic differentiation of BMSCs. Besides, the angiogenesis of human umbilical vein endothelial cells was significantly promoted by CMS/GO/SF scaffold extract through the upregulation of angiogenesis genes (eNOs and bFGF). Moreover, the osteoclastic formation ability of RAW264.7 cells was suppressed by the released ions from CMS/GO/SF scaffold through the down-regulation of CAK, MMP9 and TRAP. The promoted osteogenesis, angiogenesis and inhibited osteoclastogenesis functions of CMS/GO/SF composite scaffold may enable it as a novel therapy for bone repair and regeneration.


Assuntos
Fibroínas , Grafite , Regeneração Óssea , Cálcio , Células Endoteliais , Fibroínas/química , Grafite/química , Humanos , Magnésio , Silicatos de Magnésio , Osteogênese , Porosidade , Engenharia Tecidual , Alicerces Teciduais/química
5.
Int J Bioprint ; 7(4): 426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805599

RESUMO

Conventional bone repair scaffolds can no longer meet the high standards and requirements of clinical applications in terms of preparation process and service performance. Studies have shown that the diversity of filament structures of implantable scaffolds is closely related to their overall properties (mechanical properties, degradation properties, and biological properties). To better elucidate the characteristics and advantages of different filament structures, this paper retrieves and summarizes the state of the art in the filament structure of the three-dimensional (3D) bioprinted biodegradable bone repair scaffolds, mainly including single-layer structure, double-layer structure, hollow structure, core-shell structure and bionic structures. The eximious performance of the novel scaffolds was discussed from different aspects (material composition, ink configuration, printing parameters, etc.). Besides, the additional functions of the current bone repair scaffold, such as chondrogenesis, angiogenesis, anti-bacteria, and anti-tumor, were also concluded. Finally, the paper prospects the future material selection, structural design, functional development, and performance optimization of bone repair scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA