Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18860, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914763

RESUMO

Glansreginin A has been reported to be an indicator of the quality of walnuts (Juglans spp.). However, bioactive properties of glansreginin A have not been adequately explored. In the present study, we quantified concentrations of glansreginin A in black walnuts (Juglans nigra) using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and performed an array of in vitro bioassays to characterize biological activities (e.g., antibacterial, antioxidant, anticancer capacities) of this compound. Results from HPLC-MS/MS analysis indicated that glansreginin A was presented in all 12 black cultivars examined and its contents were variable among black walnut cultivars, ranged from 6.8 mg/kg (Jackson) to 47.0 mg/kg (Hay). Glansreginin A possessed moderate antibacterial activities against Gram-positive pathogens (Staphylococcus aureus and Bacillus anthracis). This compound exhibited no antioxidant activities, did not induce the activity of antioxidant response element signaling pathways, and exerted no antiproliferative effects on tumorigenic alveolar epithelial cells and non-tumorigenic lung fibroblast cells.


Assuntos
Juglans , Quinolinas , Juglans/química , Espectrometria de Massas em Tandem/métodos , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia
2.
Mikrochim Acta ; 189(5): 174, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366715

RESUMO

A label-free molecular imprinted polymer (MIP) sensor was fabricated for the detection of progesterone in aqueous solutions, by polymerization inside the void spaces of colloidal crystals, which gave them photonic properties. The prepolymerization mixture was prepared from acrylic acid as the functional monomer, ethylene glycol as the cross-linker agent, ethanol as solvent, and progesterone as the imprinted template. After polymerization, the colloidal crystal was removed by acid etching and the target eluted with a solvent. Material characterization included as follows: attenuated total reflectance-Fourier-transform infrared spectroscopy, dynamic light scattering, swelling experiments, and environmental scanning electron microscopy. MIPs were investigated by equilibrium binding, kinetics experiments, and UV-visible spectra to investigate Bragg diffraction peak shift that occurs with the rebinding at different progesterone concentrations in deionized water and 150-mM NaCl solutions. The MIP response was investigated with progesterone concentration in the 1-100 µg L-1 range, with LOD of 0.5 µg L-1, reaching the detected range of hormone in natural waters. Furthermore, hydrogel MIP films were successfully tested in various real water matrices with satisfactory results. Moreover, the MIP film exhibited good selectivity toward the progesterone hormone evidenced by a larger response than when exposed to structurally similar molecules. Computational studies suggested that size along with surface potential influenced the binding of analog compounds. Due to their ease of use and low cost, the sensors are promising as screening tools for the presence of progesterone in aqueous samples.


Assuntos
Impressão Molecular , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Polímeros/química , Progesterona , Água
3.
Nat Commun ; 13(1): 450, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064110

RESUMO

The mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca2+-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling. MVK interacts directly with the plant extracellular ATP (eATP) receptor P2K1 and is phosphorylated by P2K1 in response to eATP. Mutation of P2K1-mediated phosphorylation sites in MVK eliminates the ATP-induced cytoplasmic calcium response, MVK enzymatic activity, and suppresses pathogen defense. The data demonstrate that the plasma membrane associated P2K1 directly impacts plant cellular metabolism by phosphorylation of MVK, a key enzyme in the mevalonate pathway. The results underline the importance of purinergic signaling in plants and the ability of eATP to influence the activity of a key metabolite pathway with global effects on plant metabolism.


Assuntos
Trifosfato de Adenosina/farmacologia , Arabidopsis/metabolismo , Espaço Extracelular/química , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Imunidade Inata/efeitos dos fármacos , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/genética , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais
4.
Indoor Air ; 31(4): 977-988, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586827

RESUMO

Children are particularly vulnerable to many classes of the volatile organic compounds (VOCs) detected in indoor environments. The negative health impacts associated with chronic and acute exposures of the VOCs might lead to health issues such as genetic damage, cancer, and disorder of nervous systems. In this study, 40 VOCs including aldehydes and ketones, aliphatic hydrocarbons, esters, aromatic hydrocarbons, cyclic terpenes, alcohols, and glycol ethers were identified and qualified in different locations at the University of Missouri (MU) Child Development Laboratory (CDL) in Columbia, Missouri. Our results suggested that the concentrations of the VOCs varied significantly among classrooms, hallways, and playground. The VOCs emitted from personal care and cleaning products had the highest indoor levels (2-ethylhexanol-1, 3-carene, homomenthyl salicylate with mean concentration of 5.15 µg/m3 , 1.57 µg/m3 , and 1.47 µg/m3 , respectively). A cancer risk assessment was conducted, and none of the 95th percentile dose estimates exceeded the age-specific no significant risk levels (NSRL) in all classrooms. Dimensionless toxicity index scores were calculated for all VOCs using a novel web-based framework called Toxicological Prioritization Index (ToxPi), which integrates multiple sources of toxicity data. According to the method, homomenthyl salicylate, benzothiazole, 2-ethylhexyl salicylate, hexadecane, and tridecane exhibited diverse toxicity profiles and ranked as the five most toxic indoor VOCs. The findings of this study provide critical information for policy makers and early education professionals to mitigate the potentially negative health impacts of indoor VOCs in the childcare facilities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Criança , Monitoramento Ambiental , Humanos , Medição de Risco , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade
5.
Molecules ; 25(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023106

RESUMO

Our recent studies have demonstrated multiple health-promoting benefits from black walnut kernels. These biological functions of black walnuts are likely associated with their bioactive constituents. Characterization of phenolic compounds found in black walnut could point out underexplored bioactive activities of black walnut extracts and promote the development of novel applications of black walnut and its by-products. In the present study, we assessed bioactivity profiles of phenolic compounds identified in the kernels of black walnuts using a high-throughput screening (HTS) approach. Black walnut phenolic compounds were evaluated in terms of their total antioxidant capacity, antioxidant response element (ARE) induction, and anticancer activities. The anticancer activities were identified by evaluating the effects of the phenolic compounds on the growth of the tumorigenic alveolar epithelial cells (A549) and non-tumorigenic lung fibroblast cells (MRC-5). Out of 16 phenolic compounds tested, several compounds (penta-O-galloyl-ß-d-glucose, epicatechin gallate, quercetin, (-)-epicatechin, rutin, quercetin 3-ß-d-glucoside, gallic acid, (+)-catechin, ferulic acid, syringic acid) exerted antioxidant activities that were significantly higher compared to Trolox, which was used as a control. Two phenolic compounds, penta-O-galloyl-ß-d-glucose and quercetin 3-ß-d-glucoside, exhibited antiproliferative activities against both the tumorigenic alveolar epithelial cells (A549) and non-tumorigenic lung fibroblast cells (MRC-5). The antioxidant activity of black walnut is likely driven not only by penta-O-galloyl-ß-d-glucose but also by a combination of multiple phenolic compounds. Our findings suggested that black walnut extracts possibly possess anticancer activities and supported that penta-O-galloyl-ß-d-glucose could be a potential bioactive agent for the cosmetic and pharmaceutical industries.


Assuntos
Antineoplásicos/análise , Antineoplásicos/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Juglans/química , Fenóis/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração Inibidora 50 , Elementos de Resposta/genética
6.
Sci Total Environ ; 748: 142236, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039138

RESUMO

The rise of hydraulic fracturing and unconventional oil and gas (UOG) exploration in the United States has increased public concerns for water contamination induced from hydraulic fracturing fluids and associated wastewater spills. Herein, we collected surface and groundwater samples across Garfield County, Colorado, a drilling-dense region, and measured endocrine bioactivities, geochemical tracers of UOG wastewater, UOG-related organic contaminants in surface water, and evaluated UOG drilling production (weighted well scores, nearby well count, reported spills) surrounding sites. Elevated antagonist activities for the estrogen, androgen, progesterone, and glucocorticoid receptors were detected in surface water and associated with nearby shale gas well counts and density. The elevated endocrine activities were observed in surface water associated with medium and high UOG production (weighted UOG well score-based groups). These bioactivities were generally not associated with reported spills nearby, and often did not exhibit geochemical profiles associated with UOG wastewater from this region. Our results suggest the potential for releases of low-saline hydraulic fracturing fluids or chemicals used in other aspects of UOG production, similar to the chemistry of the local water, and dissimilar from defined spills of post-injection wastewater. Notably, water collected from certain medium and high UOG production sites exhibited bioactivities well above the levels known to impact the health of aquatic organisms, suggesting that further research to assess potential endocrine activities of UOG operations is warranted.


Assuntos
Água Subterrânea , Fraturamento Hidráulico , Poluentes Químicos da Água , Colorado , Gás Natural , Campos de Petróleo e Gás , Estados Unidos , Águas Residuárias , Poluentes Químicos da Água/análise , Recursos Hídricos
7.
Front Pharmacol ; 10: 1059, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607915

RESUMO

Black walnut (Juglans nigra L.) is an excellent source of health-promoting compounds. Consumption of black walnuts has been linked to many health benefits (e.g., anti-inflammatory) stemming from its phytochemical composition and medicinal properties, but these effects have not been systematically studied or characterized. In this study, potential anti-inflammatory compounds found in kernel extracts of 10 black walnut cultivars were putatively identified using a metabolomic profiling analysis, revealing differences in potential anti-inflammatory capacities among examined cultivars. Five cultivars were examined for activities in the human promonocytic cell line U-937 by evaluating the effects of the extracts on the expression of six human inflammatory cytokines/chemokines using a bead-based, flow cytometric multiplex assay. The methanolic extracts of these cultivars were added at four concentrations (0.1, 0.3, 1, and 10 mg/ml) either before and after the addition of lipopolysaccharide (LPS) to human U-937 cells to examine their effect on cytokine production. Results from cytotoxicity and viability assays revealed that the kernel extracts had no toxic effect on the U-937 cells. Of the 13 cytokines [interleukin (IL)-1ß, tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein (MCP)-1, IL-6, IL-8, IL-10, IL-12, IL-17, IL-18, IL-23, IL-33, interferon (IFN)-α, IFN-γ] measured, only six were detected under the culture conditions. The production of the six detected cytokines by phorbol 12-myristate 13-acetate (PMA)-differentiated, LPS-stimulated U-937 was significantly inhibited by the kernel extracts from two cultivars Surprise and Sparrow when the extracts were added before the addition of LPS. Other cultivars (Daniel, Mystry, and Sparks) showed weak or no significant effects on cytokine production. In contrast, no inhibitory effect was observed on the production of cytokines by PMA-differentiated, LPS-stimulated U-937 when the kernel extracts were added after the addition of LPS. The findings suggest that the extracts from certain black walnut cultivars, such as Sparrow and Surprise, are promising biological candidates for potentially decreasing the severity of inflammatory disease.

8.
Rev Environ Health ; 34(1): 35-56, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30844763

RESUMO

Background Understanding the role of environmental toxicant exposure on children's development is an important area of inquiry in order to better understand contextual factors that shape development and ultimately school readiness among young children. There is evidence suggesting negative links between exposure to environmental toxicants and negative physical health outcomes (i.e. asthma, allergies) in children. However, research on children's exposure to environmental toxicants and other developmental outcomes (cognitive, socioemotional) is limited. Objectives The goal of the current review was to assess the existing literature on the links between environmental toxicants (excluding heavy metals) and children's cognitive, socioemotional, and behavioral development among young children. Methods This literature review highlights research on environmental toxicants (i.e. pesticide exposure, bisphenol A, polycyclic aromatic hydrocarbons, tobacco smoke, polychlorinated biphenyls, flame retardants, phthalates and gas pollutions) and children's development across multiple domains. Results The results highlight the potential risk of exposure to multiple environmental toxicants for young children's cognitive and socioemotional development. Discussion Discussion will focus on the role of environmental toxicants in the cognitive and socioemotional development of young children, while highlighting gaps in the existing literature.


Assuntos
Sucesso Acadêmico , Comportamento Infantil/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Criança , Pré-Escolar , Emoções , Exposição Ambiental/classificação , Feminino , Substâncias Perigosas/classificação , Humanos , Lactente , Recém-Nascido , Masculino , Comportamento Social
9.
Mol Plant Microbe Interact ; 32(6): 654-672, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30520677

RESUMO

Insect galls are highly specialized structures arising from atypical development of plant tissue induced by insects. Galls provide the insect enhanced nutrition and protection against natural enemies and environmental stresses. Galls are essentially plant organs formed by an intimate biochemical interaction between the gall-inducing insect and its host plant. Because galls are plant organs, their development is likely to be governed by phytohormones involved in normal organogenesis. We characterized concentrations of both growth and defensive phytohormones in ungalled control leaves and galls induced by the aphid Pemphigus betae on narrowleaf cottonwood Populus angustifolia that differ genotypically in resistance to this insect. We found that susceptible trees differed from resistant trees in constitutive concentrations of both growth and defense phytohormones. Susceptible trees were characterized by significantly higher constitutive cytokinin concentrations in leaves, significantly greater ability of aphids to elicit cytokinin increases, and significantly lower constitutive defense phytohormone concentrations than observed in resistant trees. Phytohormone concentrations in both constitutive and induced responses in galled leaves exhibited high broad-sense heritability that, respectively, ranged from 0.39 to 0.93 and from 0.28 to 0.66, suggesting that selection can act upon these traits and that they might vary across the landscape. Increased cytokinin concentrations may facilitate forming strong photosynthate sinks in the galls, a requirement for galling insect success. By characterizing for the first time the changes in 15 phytohormones belonging to five different classes, this study offers a better overview of the signaling alteration occurring in galls that has likely been important for their ecology and evolution. Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Afídeos , Genótipo , Interações Hospedeiro-Parasita , Reguladores de Crescimento de Plantas , Tumores de Planta , Populus , Animais , Afídeos/fisiologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/genética , Populus/genética , Populus/parasitologia
10.
Arch Environ Contam Toxicol ; 75(2): 247-258, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29623359

RESUMO

Unconventional oil and natural gas (UOG) operations couple horizontal drilling with hydraulic fracturing to access previously inaccessible fossil fuel deposits. Hydraulic fracturing, a common form of stimulation, involves the high-pressure injection of water, chemicals, and sand to fracture the target layer and release trapped natural gas and/or oil. Spills and/or discharges of wastewater have been shown to impact surface, ground, and drinking water. The goals of this study were to characterize the endocrine activities and measure select organic contaminants in groundwater from conventional oil and gas (COG) and UOG production regions of Wyoming. Groundwater samples were collected from each region, solid-phase extracted, and assessed for endocrine activities (estrogen, androgen, progesterone, glucocorticoid, and thyroid receptor agonism and antagonism), using reporter gene assays in human endometrial cells. Water samples from UOG and conventional oil areas exhibited greater ER antagonist activities than water samples from conventional gas areas. Samples from UOG areas tended to exhibit progesterone receptor antagonism more often, suggesting there may be a UOG-related impact on these endocrine activities. We also report UOG-specific contaminants in Pavillion groundwater extracts, and these same chemicals at high concentrations in a local UOG wastewater sample. A unique suite of contaminants was observed in groundwater from a permitted drinking water well at a COG well pad and not at any UOG sites; high levels of endocrine activities (most notably, maximal estrogenic activity) were noted there, suggesting putative impacts on endocrine bioactivities by COG. As such, we report two levels of evidence for groundwater contamination by both UOG and COG operations in Wyoming.


Assuntos
Disruptores Endócrinos/análise , Água Subterrânea/análise , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Linhagem Celular , Disruptores Endócrinos/toxicidade , Endométrio/citologia , Monitoramento Ambiental , Feminino , Água Subterrânea/química , Humanos , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores , Testes de Toxicidade/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Wyoming
11.
Environ Health Perspect ; 124(3): 256-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26311476

RESUMO

BACKGROUND: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. OBJECTIVES: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. METHODS: We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. DISCUSSION: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. CONCLUSIONS: We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.


Assuntos
Disruptores Endócrinos/química , Campos de Petróleo e Gás , Poluentes Químicos da Água/química , Disruptores Endócrinos/efeitos adversos , Meio Ambiente , Monitoramento Ambiental/métodos , Água Subterrânea/química , Humanos , Petróleo , Poluentes Químicos da Água/efeitos adversos , Poluição Química da Água , Abastecimento de Água
12.
Endocrinology ; 156(12): 4458-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26465197

RESUMO

Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 µg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.


Assuntos
Peso Corporal/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Fraturamento Hidráulico , Efeitos Tardios da Exposição Pré-Natal , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Águas Residuárias/química , Animais , Feminino , Masculino , Camundongos , Tamanho do Órgão , Gravidez , Receptores Androgênicos/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Progesterona/efeitos dos fármacos , Receptores dos Hormônios Tireóideos/efeitos dos fármacos , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo/patologia , Testosterona/sangue
13.
J Environ Qual ; 40(2): 528-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520760

RESUMO

Isoxaflutole is a preemergence herbicide that has been marketed as a substitute for atrazine. It is rapidly transformed to a more stable and soluble diketonitrile degradate (DKN) after field application and can further degrade to a benzoic acid degradate (BA) within soil. However, no previous research has been conducted to investigate DKN and BA sorption to metal oxide minerals. The primary objective of this research was to elucidate the interactions of DKN and BA with synthetic hydrous aluminum and iron oxides (HAO and HFO, respectively) to understand how variably charged minerals may influence adsorption of these compounds in soil. The herbicide degradates did adsorb to HAO and HFO, and the data were well described by the Freundlich model (R2 > 0.91), with Nvalues ranging from 0.89 to 1.2. Adsorption isotherms and Kd values demonstrate that BA is adsorbed to HFO to a greater extent than other degradate-mineral combinations that were studied. The degree of hysteresis between adsorption/desorption isotherms was characterized as slight (hysteresis index values < 1.7), suggesting weak DKN and BA retention to HFO and HAO oxide surfaces. Degradate adsorption was observed to greatly diminish as suspension pH increased. Attenuated total reflectance-Fourier transform infrared spectra show no evidence that DKN or BA adsorb to mineral surfaces as inner-sphere complexes under hydrated conditions. Instead DKN and BA adsorb to positively charged metal oxide surfaces as outer-sphere or diffuse ion swarm complexes via electrostatic attraction. This research indicates that metal oxides may serve as important retardants for DKN and BA migration through acidic soils enriched with aluminum and iron oxides.


Assuntos
Óxido de Alumínio/metabolismo , Compostos Férricos/metabolismo , Herbicidas/metabolismo , Isoxazóis/metabolismo , Adsorção , Óxido de Alumínio/química , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Compostos Férricos/química , Herbicidas/química , Concentração de Íons de Hidrogênio , Isoxazóis/química , Estrutura Molecular , Nitrilas/química , Nitrilas/metabolismo , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfonas/química , Sulfonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA