Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cells ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891124

RESUMO

Canine oral melanoma is the most prevalent malignant tumor in dogs and has a poor prognosis due to its high aggressiveness and high metastasis and recurrence rates. More research is needed into its treatment and to understand its pathogenic factors. In this study, we isolated a canine oral mucosal melanoma (COMM) cell line designated as COMM6605, which has now been stably passaged for more than 100 generations, with a successful monoclonal assay and a cell multiplication time of 22.2 h. G-banded karyotype analysis of the COMM6605 cell line revealed an abnormal chromosome count ranging from 45 to 74, with the identification of a double-armed chromosome as the characteristic marker chromosome of this cell line. The oral intralingual and dorsal subcutaneous implantation models of BALB/c-nu mice were successfully established; Melan-A (MLANA), S100 beta protein (S100ß), PNL2, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) were stably expressed positively in the canine oral tumor sections, tumor cell lines, and tumor sections of tumor-bearing mice. Sublines COMM6605-Luc-EGFP and COMM6605-Cherry were established through lentiviral transfection, with COMM6605-Luc-EGFP co-expressing firefly luciferase (Luc) and enhanced green fluorescent protein (EGFP) and COMM6605-Cherry expressing the Cherry fluorescent protein gene. The COMM6605-Luc-EGFP fluorescent cell subline was injected via the tail vein and caused lung and lymph node metastasis, as detected by mouse live imaging, which can be used as an animal model to simulate the latter steps of hematogenous spread during tumor metastasis. The canine oral melanoma cell line COMM6605 and two sublines isolated and characterized in this study can offer a valuable model for studying mucosal melanoma.


Assuntos
Melanoma , Mucosa Bucal , Neoplasias Bucais , Animais , Cães , Melanoma/patologia , Melanoma/genética , Melanoma/veterinária , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/veterinária , Linhagem Celular Tumoral , Mucosa Bucal/patologia , Mucosa Bucal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Camundongos Nus
2.
J Ethnopharmacol ; 319(Pt 3): 117326, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodis Rhizoma is extensively employed in Traditional Chinese Medicine for the treatment of skin and gastrointestinal ailments. Its active components have been proven to demonstrate numerous beneficial properties, including antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-ulcer activities. Furthermore, the volatile oil from Atractylodis Rhizoma (VOAR) has been reported to effectively inhibit and eradicate pathogens such as Staphylococcus aureus, Escherichia coli and Candida albicans. Of particular concern is Staphylococcus pseudintermedius, the predominant pathogen responsible for canine pyoderma, whose increasing antimicrobial resistance poses a serious public health threat. VOAR merits further investigation regarding its antibacterial potential against Staphylococcus pseudintermedius. AIM OF THE STUDY: The study aims to verify the in vitro antibacterial activity of VOAR against Staphylococcus pseudintermedius. And a superficial skin infection model in mice was established to assess the in vivo therapeutic effect of VOAR. MATERIALS AND METHODS: Thirty strains of S. pseudintermedius were isolated from dogs with pyoderma, and the drug resistance was analyzed by disc diffusion method. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of VOAR were determined through the broth dilution method. The growth curve of bacteria in a culture medium containing VOAR was monitored using a UV spectrophotometer. Scanning electron microscopy was employed to observe the effects of VOAR on the microstructure of S. pseudintermedius. The impact of VOAR on the antibiotic resistance of S. pseudintermedius was assessed using the disc diffusion method. Twenty mice were randomly divided into four groups: the control group, the physiological saline group, the VOAR group, and the amikacin group. With the exception of the control group, the skin barrier of mice was disrupted by tap stripping, and the mice were subsequently inoculated with S. pseudintermedius to establish a superficial skin infection model. The modeled mice were treated with normal saline, VOAR, and amikacin for 5 days. Following the treatment period, the therapeutic effect of each group was evaluated based on the measures of body weight, skin symptoms, tissue bacterial load, tissue IL-6 content, and histopathological changes. RESULTS: The MIC and MBC of VOAR against 30 clinical isolates of S. pseudintermedius were found to be 0.005425% and 0.016875%, respectively. VOAR could exhibit the ability to delay the entry of bacteria into the logarithmic growth phase, disrupt the bacterial structure, and enhance the antibacterial zone in conjunction with antibiotic drugs. In the superficial skin infection model mice, VOAR significantly reduced the scores for skin redness (P < 0.0001), scab formation (P < 0.0001), and wrinkles (P < 0.0001). Moreover, VOAR markedly reduced the bacterial load (P < 0.001) and IL-6 content (P < 0.0001) in the skin tissues of mice. Histopathological observations revealed that the full-layer skin structure in the VOAR group was more complete, with clearer skin layers, and showed significant improvement in inflammatory cell infiltration and fibroblast proliferation compared to other groups. CONCLUSION: The results demonstrate that VOAR effectively inhibits and eradicates Staphylococcus pseudintermedius in vitro while also enhancing the pathogen's sensitivity to antibiotics. Moreover, VOAR exhibits a pronounced therapeutic effect in the superficial skin infection model mice.


Assuntos
Atractylodes , Staphylococcus aureus Resistente à Meticilina , Pioderma , Cães , Animais , Camundongos , Amicacina , Interleucina-6 , Pioderma/tratamento farmacológico , Pioderma/veterinária , Antibacterianos/farmacologia
3.
Front Vet Sci ; 10: 1192525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098990

RESUMO

The concept of adenoma-to-cancer transformation in human colorectal cancer (CRC) is widely accepted. However, the relationship between transcriptome features and adenoma to carcinoma transformation in canines is not clear. We collected transcriptome data from 8 normal colon tissues, 4 adenoma tissues, and 15 cancer tissues. Differential analysis was unable to determine the dynamic changes of genes but revealed that PFKFB3 may play a key role in this process. Enrichment analysis explained metabolic dysregulation, immunosuppression, and typical cancer pathways in canine colorectal tumors. MFuzz generated specific dynamic expression patterns of five differentially expressed genes (DEGs). Weighted correlation network analysis showed that DEGs in cluster 3 were associated with malignant tissues, revealing the key role of inflammatory and immune pathways in canine CRC, and the S100A protein family was also found to be involved in the malignant transformation of canine colorectal tumors. By comparing strategies between humans and dogs, we found five novel markers that may be drivers of CRC. Among them, GTBP4 showed excellent diagnostic and prognostic ability. This study was the first systematic exploration of transformation in canine CRC, complemented the molecular characteristics of the development and progression of canine CRC, and provided new potential biomarkers and comparative oncologic evidence for biomarker studies in human colorectal cancer.

4.
Vet Immunol Immunopathol ; 262: 110622, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37478614

RESUMO

Colorectal cancer (CRC) in dogs has been shown to have similar molecular characteristics to human colorectal cancer. Although researchers have explored the pathogenesis and immune status of human CRC, the canine CRC has been far less studied. As a result, we analyzed canine colorectal tumors and normal canine intestinal samples by Gene Set Enrichment Analysis (GSEA) and found significant enrichment of immune-related pathways, including the TNF-α signaling pathway and IL6-STAT3 signaling pathway. In addition, the differential infiltration of naive B cells and regulatory T cells suggested that canine CRC was in a state of immunosuppression. Weighted gene co-expression network analysis (WGCNA) revealed the gene modules that contribute to differences in regulatory T cell inetfiltration, Further cross-validation of canine and human CRC differential genes obtained three core genes that are both species-conserved and differentially expressed, CD44, NAT10, and ETV4, of which NAT10 and ETV4 have been little studied in the immune status of colorectal cancer. Our findings may have implications for the pathogenesis and progression of CRC in dogs and could be a new potential therapeutic target for CMT and provide a bioinformatics foundation for later clinical experiment validation.


Assuntos
Neoplasias Colorretais , Doenças do Cão , Humanos , Animais , Cães , Transcriptoma , Fator de Necrose Tumoral alfa , Linfócitos B , Biomarcadores , Neoplasias Colorretais/genética , Neoplasias Colorretais/veterinária , Doenças do Cão/genética
5.
Biomed Pharmacother ; 162: 114731, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086510

RESUMO

BACKGROUND: Canine inflammatory mammary carcinoma (CIMC) has a high incidence of metastasis, high lethality, and poor prognosis, which needs novel adjuvant agents. Tetramethylpyrazine-Rhein Derivative (TRD) has been shown to have antitumor activity, which is a potential research direction for CIMC. PURPOSE: This study evaluated the efficacy of TRD on CIMC in vitro and in vivo, and provided possibilities for the application of active compounds in traditional Chinese medicine. METHODS: In vitro, TRD cytotoxicity was measured with CCK-8. Flow cytometry and transmission electron microscope were used to detect the cell cycle, cell death, and changes in mitochondria. Wound-healing assay, cell invasion assay, and scanning electron microscope were used to evaluate the suppression of cell migration and invasion. Expression changes were detected by RT-qPCR and western blot assay. In vivo, the lung metastasis models were randomly divided into control, low-dose TRD, high-dose TRD, and positive groups. Each group was administered orally once a day for 18 days and took in vivo imaging photos. RESULTS: The IC50 of TRD in CHMp and MDCK were 42.59 and 79.37 µM, respectively. TRD mediated cell apoptosis by mitochondrial damage and caused S and G2/M phase arrest by downregulating cyclin B1. Moreover, TRD reduced filopodia and inhibited cell migration by downregulating cadherins. In CIMC lung metastasis models, TRD could effectively inhibit tumor growth (P < 0.001) in the lungs without significant toxicity. CONCLUSION: TRD showed potential activity to inhibit CIMC lung metastasis with multi-target and low toxicity.


Assuntos
Carcinoma , Neoplasias Pulmonares , Animais , Cães , Caderinas/metabolismo , Regulação para Baixo , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células
6.
Biomed Pharmacother ; 160: 114377, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764134

RESUMO

Tumor-derived total RNA (TdRNA) and cell lysate (TCL), with almost all the relevant tumor antigens, represent attractive alternative sources of antigens in antitumor immunotherapy. However, the comparison of their capacity to elicit immune responses against breast cancer is still lacking. In this study, the antitumor immune effects of TdRNA and TCL were systematically compared. We isolated TdRNA and TCL from 4T1 mouse breast cancer cells, and found that both sources of antigens could stimulate the maturation of dendritic cells (DCs) at the cellular and in vivo levels, and induce robust cellular immune responses, as evidenced by the increased percentages of both CD4+ and CD8+ T cells in the inguinal lymph nodes and spleen. But TdRNA performed stronger immunoactivities than TCL on the increase of T cell population through DCs activation. Additionally, the synergistic antitumor efficacy of paclitaxel (PTX) with TdRNA and TCL respectively was further evaluated in the murine 4T1 tumor model. Compared with TCL, TdRNA could inhibit tumor growth more effectively with low systemic toxicity when combined with PTX, which was, at least in part, attributable to the improvement of systemic immune function and tumor immune infiltration. Overall, TdRNA outperforms TCL in antitumor immunity, and is expected to be a promising candidate for application as the source of tumor antigens.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunidade Celular , Imunoterapia , Neoplasias/tratamento farmacológico , RNA/genética
7.
Biomed Pharmacother ; 159: 114246, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652734

RESUMO

Monocyte-derived macrophages can be polarized into antitumor M1 phenotype, which inhibited the growth of tumors, and immune-suppressive M2 phenotype, which promoted the development and metastasis of tumors. Plantain polysaccharide (PLP), extracted from the Plantago asiatica, has shown its various biological activities. However, the ability of PLP involved in immune regulation was still obscure. Accordingly, we aimed to investigate whether PLP could polarize macrophages and further inhibit 4T1 tumor cells in vivo and in vitro. In this research, in vitro results showed that PLP displayed the potential in polarizing RAW264.7 macrophages into M1 phenotype and indirect inhibiting migratory effect on 4T1 cells. Furthermore, the phagocytosis and the release of reactive oxygen species (ROS) of macrophages were enhanced. In vivo anti-tumor results demonstrated that PLP could effectively inhibit the growth of 4T1 breast tumors by promoting accumulation of macrophages and T cells in the spleen and lymph node. In conclusion, these findings indicated that PLP inhibited the proliferation and progression of breast tumors by accumulating CD4+, CD8+ T cells and M1-like macrophages in lymph node and spleen, and therefore provided an experimental basis for PLP as a potential antitumor adjunctive therapy in preclinical and clinical trials.


Assuntos
Neoplasias da Mama , Plantago , Humanos , Feminino , Linfócitos T CD8-Positivos , Macrófagos , Fenótipo , Polissacarídeos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
8.
Front Microbiol ; 14: 1329772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249491

RESUMO

Background: Periodontal disease (PD) is a prevalent oral affliction in canines, with limited therapeutic options available. The potential transmission of oral bacteria from canines to humans through inter-species contact poses a risk of zoonotic infection. Epigallocatechin gallate (EGCG), the principal catechin in green tea polyphenols, exhibits antibacterial properties effective against human PD. Given the clinical parallels between canine and human PD, this study explores the feasibility of employing EGCG as a therapeutic agent for canine PD. Methods and results: Initially, a survey and statistical analysis of bacterial infection data related to canine PD in China were conducted. Subsequently, the primary pathogenic bacteria of canine PD were isolated and cultivated, and the in vitro antibacterial efficacy of EGCG was assessed. Furthermore, verify the therapeutic effect of EGCG on a mouse PD model in vivo. The high-throughput 16S rRNA gene sequencing identified Porphyromonas, Fusobacterium, Treponema, Moraxella, and Capnocytophaga as the genera that distinguishing PD from healthy canines' gingival crevicular fluid (GCF) samples in China. The anaerobic culture and drug susceptibility testing isolated a total of 92 clinical strains, representing 22 species, from 72 canine GCF samples, including Porphyromonas gulae, Prevotella intermedia, Porphyromonas macacae, etc. The minimum inhibitory concentration (MIC) ranging of EGCG was from 0.019 to 1.25 mg/mL. Following a 7 days oral mucosal administration of medium-dose EGCG (0.625 mg/mL), the abundance of periodontal microorganisms in PD mice significantly decreased. This intervention ameliorated alveolar bone loss, reducing the average cementoenamel junction to the alveolar bone crest (CEJ-ABC) distance from 0.306 mm ± 0.050 mm to 0.161 mm ± 0.026 mm. Additionally, EGCG (0.3125 mg/mL) markedly down-regulated the expression of inflammatory factor IL-6 in the serum of PD mice. Conclusion: Our research demonstrates the significant antibacterial effects of EGCG against the prevalent bacterium P. gulae in canine PD. Moreover, EGCG exhibits anti-inflammatory properties and proves effective in addressing bone loss in a PD mouse model. These findings collectively suggest the therapeutic potential of EGCG in the treatment of canine PD. The outcomes of this study contribute valuable data, laying the foundation for further exploration and screening of alternative antibiotic drugs to advance the management of canine PD.

9.
Front Immunol ; 13: 1026898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311793

RESUMO

Purpose: To emphasize the importance of tumor-associated macrophages (TAMs) in tumor immunity and to describe the ways in which extracts from Traditional Chinese Medicine (TCM) achieve tumor therapy by modulating macrophages. Significance: By summarizing these available data, this review focused on TAMs and TCM and can build the foundation for future research on antitumor therapeutics. Methods: In this review, we summarized the key functions of TAMs in cancer development and overviewed literature on TCM targeting TAMs together with other immune cells aiming to enhance antitumor immunity. Conclusions: With an indispensable role in antitumor immunity, TAMs contribute to tumor progression, migration, invasion, angiogenesis, lymphangiogenesis, and immunosuppressive microenvironment. In recent years, TCM has gradually gained attention as a potential antitumor adjunctive therapy in preclinical and clinical trials. TCM is also a regulator of cytokine secretion and cell surface molecule expression in balancing the tumor microenvironment (TME), especially macrophage activation and polarization. Therefore, it is believed that TCM could serve as modifiers with immunomodulatory capability.


Assuntos
Medicina Tradicional Chinesa , Neoplasias , Humanos , Macrófagos Associados a Tumor , Microambiente Tumoral , Neoplasias/patologia , Macrófagos
10.
Nanoscale Adv ; 4(7): 1808-1814, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132165

RESUMO

S4A ((1R,2R,3S)-1,2-propanediol acetal-zeylenone) is one of the derivatives of zeylenone and exhibits superior cytotoxicity against the canine breast cancer cell line CIPp. However, its poor aqueous solubility and toxicity to normal tissue limit its clinical application. Therefore, in order to enhance the anticancer effect of S4A, in this article, BSA/BSA-Au-nanocluster-aggregated core/shell nanoparticles (B-BANC-NPs) were prepared by using bovine serum albumin (BSA) and HAuCl4, and then we further synthesized S4A-BSA-Au NPs which were spherical, with a diameter of about 60 nm. In vitro cytotoxicity assessed by using CCK-8 assay demonstrated that the IC50 value of the S4A-BSA-Au NPs was 10.39 µg mL-1, which was not significantly different from that of S4A (10.45 µg mL-1). In vitro apoptosis assay showed that the apoptosis rate of cells treated with S4A-BSA-Au NPs was 20.12%, which was significantly higher than that of the control group treated with S4A (11.3%). Notably, S4A-BSA-Au NPs were shown to effectively accumulate at tumor sites with fluorescence tracing. Besides, the effect of S4A-BSA-Au NPs on SPARC expression was determined by western blotting, and the result showed that 24 h after applying S4A-BSA-Au NPs, SPARC expression in low, middle and high dosage groups was lower than that of the control group, and the tendency showed dose dependence. The results revealed that S4A-BSA-Au NPs could effectively improve the anti-tumor activity of S4A on canine breast cancer, which may be associated with their abilities to effectively accumulate within tumor and to reduce the expression of SPARC.

11.
Front Vet Sci ; 9: 935005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982924

RESUMO

Canine inflammatory mammary carcinoma (CIMC) is a type of canine malignant mammary tumor with a poor prognosis and high mortality. We transduced firefly luciferase and enhanced green fluorescent protein (EGFP) into CHMp, a CIMC cell line, and established CHMp-Luc-EGFP cells. We investigated the characteristics of this cell line in vitro and in vivo. CHMp-Luc-EGFP was passaged continuously 75 times, with stable expression of luciferase and EGFP. Compared with the wild-type, CHMp-Luc-EGFP had similar proliferation, metastasis, histopathology characteristics, and expression of E-cadherin, N-cadherin, and Ki-67. A tumor-bearing model was established by implantation of CHMp-Luc-EGFP cells, and the dynamic changes of tumors were visualized and quantified using the IVIS imaging system. In summary, the cell line we established could reflect the biological characteristics of CHMp cells, visualize the tumor progression in vivo, and provide a powerful tool for the study of CIMC.

12.
Vet Immunol Immunopathol ; 249: 110432, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550248

RESUMO

As the fierce battle with cancer is now expanding to companion animals, effective treatment of canine mammary carcinomas (CMT), as the most frequently diagnosed tumor in intact dogs, is becoming a crucial issue. Although many studies have been carried out concerning the clinical application of mammary tumor biomarkers, no ideal biomarker has yet been identified in CMT. Therefore, in this work, we develop EDIL3 as a CMT biomarker having significantly higher expression levels in CMT samples compared to those in controls in GSE13754, GSE22516 and GSE25586 datasets, which suggest that EDIL3 is a gene related to tumorigenesis. We also validate the significantly high expression levels of EDIL3 in CMT samples using our sequencing canine samples. ROC curves analysis showed that in comparison with HER2 reported as predictive factor for CMT patients, EDIL3 exhibits stronger power for CMT recognizing. Moreover, we also find that low expression levels of EDIL3 are associated with advanced grade status in CMT, which indicate a negative correlation between EDIL3 and CMT development. GSEA is employed to unveil the underlying mechanism of this interesting function of EDIL3 in CMT development, and it suggests that the expression level of EDIL3 is related to immunity pathway. Finally, CIBERSORT analysis is employed in this study in order to further explore the relationship between EDIL3 and immunity in CMT, and it unveils that EDIL3 has stably positive correlation with follicular helper T cells and negative correlation with NK resting cells in CMT. Our study develops EDIL3 as a biomarker for assisting CMT distinction, highlighting the relationship of EDIL3 with the infiltrations of follicular helper T cells and NK resting cells, which could be a new potential therapy target for CMT and provide bioinformatics basis for later clinical experiment validation.


Assuntos
Carcinoma , Doenças do Cão , Neoplasias Mamárias Animais , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/veterinária , Biologia Computacional , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Doenças do Cão/metabolismo , Cães , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/genética
13.
Molecules ; 27(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566349

RESUMO

Curcumin is a natural acidic polyphenol extracted from turmeric with a wide range of biological and pharmacological effects. However, the application of curcumin for animal production and human life is limited by a low oral bioavailability. In this study, natural curcumin was prepared for the curcumin ß-cyclodextrin inclusion complex (CUR-ß-CD), curcumin solid dispersion (CUR-PEG-6000), and curcumin phospholipid complex (CUR-HSPC) using co-precipitation, melting, and solvent methods, respectively. Curcumin complex formations were monitored using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques via the shifts in the microscopic structure, molecular structure, and crystalline state. Subsequently, twenty-four female beagle dogs were randomly divided into four groups to receive unmodified curcumin and three other curcumin preparations. The validated UPLC-MS assay was successfully applied to pharmacokinetic and bioavailability studies of curcumin in beagle dog plasma, which were collected after dosing at 0 min (predose), 5 min, 15 min, 30 min, 40 min, 50 min, 1.5 h, 3 h, 4.5 h, 5.5 h, 6 h, 6.5 h, 9 h, and 24 h. The relative bioavailabilities of CUR-ß-CD, CUR-PEG-6000, and CUR-HSPC were 231.94%, 272.37%, and 196.42%, respectively. This confirmed that CUR-ß-CD, CUR-HSPC, and especially CUR-PEG-6000 could effectively improve the bioavailability of curcumin.


Assuntos
Curcumina , beta-Ciclodextrinas , Animais , Cães , Feminino , beta-Ciclodextrinas/química , Disponibilidade Biológica , Cromatografia Líquida , Curcumina/farmacologia , Fosfolipídeos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
14.
Front Oncol ; 11: 738085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900688

RESUMO

Colon cancer is one of the deadliest tumors in the world, and with high metastasis rate and mortality, effective drugs for its treatment are still in need. Auranofin (AF) is a gold complex that has been attested by FDA for treating human rheumatism, and researchers have found that AF acts as a great antitumor drug in recent years. ICG-001 is a small molecule inhibitor of Wnt/ß-catenin pathway. In the present study, we aimed to explore the synergistic antitumor effects and the underlying mechanisms of AF and ICG-001 combination therapy on human colon cancer. The results showed that AF and ICG-001 synergistically depressed the growth and invasion of human colon cancer cells by inhibiting the phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) and its downstream mediator B-cell lymphoma-2-like 1 (Bcl-xL) and inducing caspase-3-dependent apoptosis. Moreover, AF combined with ICG-001 synergistically inhibited the growth of colon cancer in subcutaneous xenograft mice models and restrained metastasis in lung metastasis mice models. In conclusion, our results demonstrated that combination of AF and ICG-001 suppressed the proliferation and metastasis of colon cancer by inhibiting STAT3 phosphorylation. Therefore, this combination therapy may possess potential therapeutic properties for human colon cancer.

15.
Front Pharmacol ; 12: 678865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504423

RESUMO

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that mediate T-cell immune responses. Breast cancer is one of the most commonly diagnosed diseases and its mortality rate is higher than any other cancer in both humans and canines. Plantain polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., could promote the maturation of DCs. In this research, we found that PLP could upregulate the maturation of DCs both in vitro and in vivo. PLP-activated DCs could stimulate lymphocytes' proliferation and differentiate naive T cells into cytotoxic T cells. Tumor antigen-specific lymphocyte responses were enhanced by PLP and CIPp canine breast tumor cells lysate-pulsed DCs, and PLP and CIPp-cell-lysate jointly stimulated DCs cocultured with lymphocytes having the great cytotoxicity on CIPp cells. In the 4T1 murine breast tumor model, PLP could control the size of breast tumors and improve immunity by recruiting DCs, macrophages, and CD4+ and CD8+ T cells in the tumor microenvironment. These results indicated that PLP could achieve immunotherapeutic effects and improve immunity in the breast tumor model.

16.
Front Vet Sci ; 8: 772687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977210

RESUMO

Canine breast cancer (CBC) is the most common spontaneous tumor in intact female dogs, especially in developing countries. The effective anti-tumor agents or therapies for the clinical treatment of CBC are still in need. Auranofin (AF) is a gold complex that has been attested by FDA for treating human rheumatism, which has been found as a great anti-tumor agent in recent years. ICG-001 is a small molecule inhibitor of Wnt/ß-catenin pathway. In the present study, we demonstrated that a combination of AF and ICG-001 could synergistically suppress the proliferation of CBC in vitro and in vivo. Moreover, the synergistical effect was related with apoptosis caused by mitochondrial damage and ROS production. In conclusion, combination of AF and ICG-001 could synergistically suppress the growth of CBC in vitro and in vivo by leading apoptosis via mitochondrial signaling pathway and might provide a novel potential choice for the clinical treatment of CBC.

17.
Cryobiology ; 98: 164-171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248049

RESUMO

The therapeutic effects of cryotherapy on skin and subcutaneous tumors in dogs were retrospectively studied in 20 dogs with 37 tumor lesions, of which 30 were benign and seven were malignant. Our results showed that during follow-up, 94.5% of lesions were completely exfoliated, without relapse or metastasis (mean time = 245.7 days). To investigate the effects of cryotherapy, we compared histopathological observations and microstructural changes in healthy tissues and tumor tissues, before and after cryotherapy. After cryotherapy, both normal skin and tumor tissue exhibited edema and hyperemia, with inflammatory cell infiltration. The cell nuclei exhibited pyknosis, disintegration and necrosis, and tight junctions were decreased in size. Cell morphology was varied, along with fragmented cell nuclear envelopes, crenulated nuclei and indistinct and necrotic intracellular organelles. Vacuoles were apparent in the cytoplasm and intercellular desmosomes were absent. These observations suggested that cryosurgery inhibited skin and subcutaneous tumors via cold-induced injury to cells, and cellular microenvironment changes induced by apoptosis. The results suggested that cryosurgery prevented skin and subcutaneous tumors via cold-induced injury to cells, and cellular microenvironment changes induced by apoptosis. We believe these data will provide general cryotherapy guidance to scientists and veterinary surgeons.


Assuntos
Criocirurgia , Neoplasias , Animais , Criopreservação/métodos , Crioterapia , Cães , Estudos Retrospectivos , Microambiente Tumoral
18.
Front Vet Sci ; 7: 580530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263014

RESUMO

Background: Canine mammary carcinoma is common in female dogs, and its poor prognosis remains a serious clinical challenge, especially in developing countries. Benzyl isothiocyanate (BITC) has attracted great interest because of its inhibitory effect against tumor activity. However, its effect and the underlying mechanisms of action in canine mammary cancer are not well-understood. Here, we show that BITC suppresses mammary tumor growth, both in vivo and in vitro, and reveal some of the potential mechanisms involved. Methods: The effect of BITC on canine mammary cancer was evaluated on CIPp and CMT-7364, canine mammary carcinoma lines. The cell lines were treated with BITC and then subjected to wound healing and invasion assays. Cell cycles and apoptosis were measured using flow cytometry; TUNEL assay; immunohistochemistry (IHC) for caspase 3, caspase 9, and cyclin D1; hematoxylin and eosin (H&E) staining; and/or quantitative polymerase chain reaction (qPCR). Results: BITC showed a strong suppressive effect in both CIPp and CMT-7364 cells by inhibiting cell growth in vitro; these effects were both dose- and time-dependent. BITC also inhibited migration and invasion of CIPp and CMT-7364 cells. BITC induced G2 arrest and apoptosis, decreasing tumor growth in nude mice by downregulation of cyclin B1 and Cdk1 expression. Conclusion: BITC suppressed both invasion and migration of CIPp and CMT-7364 cells and induced apoptosis. BITC inhibited canine mammary tumor growth by suppressing cyclinB1 and Cdk1 expression in nude mice.

19.
Animals (Basel) ; 11(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375426

RESUMO

Mucin 1 (MUC1), a transmembrane protein, is closely associated with the malignancy and metastasis of canine mammary tumors; however, the role of overexpressed MUC1 in the development of cancer cells and response to drug treatment remains unclear. To address this question, we developed a new canine mammary tumor cell line, CIPp-MUC1, with an elevated expression level of MUC1. In vitro studies showed that CIPp-MUC1 cells are superior in proliferation and migration than wild-type control, which was associated with the upregulation of PI3K, p-Akt, mTOR, Bcl-2. In addition, overexpression of MUC1 in CIPp-MUC1 cells inhibited the suppressing activity of disulfiram on the growth and metastasis of tumor cells, as well as inhibiting the pro-apoptotic effect of disulfiram. In vivo studies, on the other side, showed more rapid tumor growth and stronger resistance to disulfiram treatment in CIPp-MUC1 xenograft mice than in wild-type control. In conclusion, our study demonstrated the importance of MUC1 in affecting the therapeutical efficiency of disulfiram against canine mammary tumors, indicating that the expression level of MUC1 should be considered for clinical use of disulfiram or other drugs targeting PI3K/Akt pathway.

20.
Oncogene ; 39(13): 2807-2818, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32029898

RESUMO

Hypoxic stress is intimately connected with tumor progression, with hypoxia-inducible factor-1α (HIF-1α) being a critical regulator in this process. HIF-1α is stabilized in response to hypoxia, which is required for the induction of gene transcriptions important for hypoxic adaptation. Bclaf1 is a multifunctional protein involved in tumorigenesis, however, its role in this process is not well characterized. Here we report Bclaf1 is a direct transcriptional target of HIF-1 and upregulated in multiple cell lines during hypoxia. Importantly, we found Bclaf1 is involved in the stabilization of HIF-1α during long-term hypoxic treatments. Compared with the control cells, the protein level and stability of HIF-1α in Bclaf1 knockdown or knockout cells is greatly compromised after long-term hypoxic treatments, concomitant with the impaired inductions of HIF-1 target gene transcription. Bclaf1 knockout HeLa cells exhibit a reduced tumor growth in mice xenografts, in which the expressions of HIF-1α and its target genes are also decreased. Bclaf1 binds to HIF-1α in the nucleus, and this interaction is required for Bclaf1 to stabilize HIF-1α in hypoxic condition. These results uncover a positive feedback loop, HIF-1-Bclaf1, that sustains HIF-1 activity during long-term hypoxic conditions by binding to and protecting HIF-1α from degradation, and suggest that Bclaf1 may promote tumor progression by enhancing HIF-1α stability.


Assuntos
Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Hipóxia Celular/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Camundongos , Neoplasias/patologia , Estabilidade Proteica , Proteínas Repressoras/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA