Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Surg ; 16(1): 186-195, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328332

RESUMO

BACKGROUND: Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer. Incisional surgical site infection (SSI) is a common complication after ileostomy closure. AIM: To evaluate the efficacy and safety of the micro-power negative pressure wound technique (MPNPWT) in preventing incisional SSI. METHODS: This was a prospective, randomized controlled clinical trial conducted at a single center. A total of 101 consecutive patients who underwent ileostomy closure after rectal cancer surgery with a prophylactic ileostomy were enrolled from January 2019 to December 2021. Patients were randomly allocated into an MPNPWT group and a control group. The MPNPWT group underwent intermittent suturing of the surgical incision with 2-0 Prolene and was covered with a micro-power negative pressure dressing. The surgical outcomes were compared between the MPNPWT (n = 50) and control (n = 51) groups. Risk factors for incisional SSI were identified using logistic regression. RESULTS: There were no differences in baseline characteristics between the MPNPWT (n = 50) and control groups (n = 51). The incisional SSI rate was significantly higher in the control group than in the MPNPWT group (15.7% vs 2.0%, P = 0.031). However, MPNPWT did not affect other surgical outcomes, including intra-abdominal complications, operative time, and blood loss. Postoperative hospital stay length and hospitalization costs did not differ significantly between the two groups (P = 0.069 and 0.843, respectively). None of the patients experienced adverse effects of MPNPWT, including skin allergy, dermatitis, and pain. MPNPWT also helped heal the infected incision. Our study indicated that MPNPWT was an independent protective factor [odds ratio (OR) = 0.005, P = 0.025)] and diabetes was a risk factor (OR = 26.575, P= 0.029) for incisional SSI. CONCLUSION: MPNPWT is an effective and safe way to prevent incisional SSI after loop ileostomy closure.

2.
Med Oncol ; 41(3): 66, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281254

RESUMO

Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Piroptose , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Neoplasias/metabolismo
3.
Reprod Biol Endocrinol ; 20(1): 154, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329464

RESUMO

The importance of actin and microtubule (MT) cytoskeletons in testis function in rodents is known to some extent, but its role in the etiology of azoospermia in humans remains unexplored. Here, we examined if MT cytoskeleton was defective in NOA (non-obstructive azoospermia) testes versus normal human testes based on histopathological, immunofluorescence (IF), and scRNA-Seq transcriptome profiling. Testis biopsy samples from n = 6 normal men versus n = 3 Sertoli cell only (SCO) and n = 3 MA (meiotic arrest) of NOA patients were used for histopathological analysis. IF analysis was also used to examine MT organization across the seminiferous epithelium, investigating the likely involvement of microtubule-associated proteins (MAPs). scRNA-Seq transcriptome profiling datasets from testes of 3 SCO patients versus 3 normal men in public domain in Gene Expression Omnibus (GEO) Sample (GSM) with identifiers were analyzed to examine relevant genes that regulate MT dynamics. NOA testes of MA and SCO patients displayed notable defects in MT organization across the epithelium with extensive truncation, mis-alignments and appeared as collapsed structures near the base of the tubules. These changes are in contrast to MTs in testes of normal men. scRNA-Seq analyses revealed considerable loss of spermatogenesis capacity in SCO testes of NOA patients versus normal men. An array of genes that support MT dynamics displayed considerable changes in expression and in spatial distribution. In summary, defects in MT cytoskeleton were noted in testes of NOA (SCO) patients, possibly mediated by defective spatial expression and/or distribution of MAPs. These changes, in turn, may impede spermatogenesis in SCO testes of NOA patients.


Assuntos
Azoospermia , Humanos , Masculino , Azoospermia/genética , Azoospermia/patologia , Testículo/metabolismo , Espermatogênese/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Citoesqueleto/genética , Citoesqueleto/metabolismo
4.
Cell Death Dis ; 12(5): 491, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990549

RESUMO

Spermatogonia transit-amplifying (TA) divisions are crucial for the differentiation of germline stem cell daughters. However, the underlying mechanism is largely unknown. In the present study, we demonstrated that CG6015 was essential for spermatogonia TA-divisions and elongated spermatozoon development in Drosophila melanogaster. Spermatogonia deficient in CG6015 inhibited germline differentiation leading to the accumulation of undifferentiated cell populations. Transcriptome profiling using RNA sequencing indicated that CG6015 was involved in spermatogenesis, spermatid differentiation, and metabolic processes. Gene Set Enrichment Analysis (GSEA) revealed the relationship between CG6015 and the epidermal growth factor receptor (EGFR) signaling pathway. Unexpectedly, we discovered that phosphorylated extracellular regulated kinase (dpERK) signals were activated in germline stem cell (GSC)-like cells after reduction of CG6015 in spermatogonia. Moreover, Downstream of raf1 (Dsor1), a key downstream target of EGFR, mimicked the phenotype of CG6015, and germline dpERK signals were activated in spermatogonia of Dsor1 RNAi testes. Together, these findings revealed a potential regulatory mechanism of CG6015 via EGFR signaling during spermatogonia TA-divisions in Drosophila testes.


Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Espermatogônias/fisiologia , Testículo/metabolismo , Animais , Diferenciação Celular/fisiologia , Drosophila , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA