Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 14(1): 54, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678227

RESUMO

BACKGROUND: Extensive hepatocyte mortality and the absence of specific medical therapy significantly contribute to the unfavorable prognosis of acute liver failure (ALF). Ferroptosis is a crucial form of cell death involved in ALF. In this study, we aimed to determine the impact of Mediator complex subunit 1 (Med1) on ferroptosis and its potential hepatoprotective effects in ALF. RESULTS: Med1 expression is diminished in the liver of lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALF mice, as well as in hepatocytes damaged by H2O2 or TNF-α/D-GalN in vitro. Med1 overexpression mitigates liver injury and decreases the mortality rate of ALF mice by ferroptosis inhibition. The mechanism by which Med1 inhibits erastin-induced ferroptosis in hepatocytes involves the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes heme oxygenase-1 (HO-1), glutamate cysteine ligase catalytic (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1). Furthermore, Med1 overexpression suppresses the transcription of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the liver of mice with LPS/D-GalN-induced ALF. CONCLUSION: Overall, our research findings indicate that Med1 suppresses ferroptosis and alleviates liver injury in LPS/D-GalN-induced ALF through the activation of Nrf2. These findings substantiate the therapeutic viability of targeting the Med1-Nrf2 axis as a means of treating individuals afflicted with ALF.

2.
Stem Cells ; 41(12): 1171-1184, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37659098

RESUMO

Acute-on-chronic liver failure (ACLF) is a severe disease with a high mortality. Macrophage-related inflammation plays a crucial role in ACLF development. Mesenchymal stem cells (MSCs) treatment was demonstrated to be beneficial in ACLF in our previous study; however, the underlying mechanisms remain unknown. Therefore, mouse bone marrow-derived MSCs were used to treat an ACLF mouse model or cocultured with RAW264.7/J774A.1 macrophages that were stimulated with LPS. Histological and serological parameters and survival were analyzed to evaluate efficacy. We detected changes of Mer tyrosine kinase (Mertk), JAK1/STAT6, inflammatory cytokines, and markers of macrophage polarization in vitro and in vivo. In ACLF mice, MSCs improved liver function and 48-h survival of ACLF mice and alleviated inflammatory injury by promoting M2 macrophage polarization and elevated Mertk expression levels in macrophages. This is significant, as Mertk regulates M2 macrophage polarization via the JAK1/STAT6 signaling pathway.


Assuntos
Insuficiência Hepática Crônica Agudizada , Células-Tronco Mesenquimais , Camundongos , Animais , Insuficiência Hepática Crônica Agudizada/metabolismo , Proteínas Tirosina Quinases/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
3.
Front Pharmacol ; 14: 1168545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305542

RESUMO

Balancing hepatocyte death and proliferation is key to non-transplantation treatments for acute liver failure (ALF), which has a high short-term mortality rate. Small extracellular vesicles (sEVs) may act as mediators in the repair of damaged liver tissue by mesenchymal stem cells (MSCs). We aimed to investigate the efficacy of human bone marrow MSC-derived sEVs (BMSC-sEVs) in treating mice with ALF and the molecular mechanisms involved in regulating hepatocyte proliferation and apoptosis. Small EVs and sEV-free BMSC concentrated medium were injected into mice with LPS/D-GalN-induced ALF to assess survival, changes in serology, liver pathology, and apoptosis and proliferation in different phases. The results were further verified in vitro in L-02 cells with hydrogen peroxide injury. BMSC-sEV-treated mice with ALF had higher 24 h survival rates and more significant reductions in liver injury than mice treated with sEV-free concentrated medium. BMSC-sEVs reduced hepatocyte apoptosis and promoted cell proliferation by upregulating miR-20a-5p, which targeted the PTEN/AKT signaling pathway. Additionally, BMSC-sEVs upregulated the mir-20a precursor in hepatocytes. The application of BMSC-sEVs showed a positive impact by preventing the development of ALF, and may serve as a promising strategy for promoting ALF liver regeneration. miR-20a-5p plays an important role in liver protection from ALF by BMSC-sEVs.

4.
Cell Death Dis ; 13(10): 865, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224178

RESUMO

Acute-on-chronic liver failure is a distinct clinical syndrome characterized by a dysregulated immune response and extensive hepatocyte death without satisfactory therapies. As a cytoplasmic degradative and quality-control process, autophagy was implicated in maintaining intracellular homeostasis, and decreased hepatic autophagy was found in many liver diseases and contributes to disease pathogenesis. Previously, we identified the therapeutic potential of mesenchymal stem cells (MSCs) in ACLF patients; however, the intrinsic mechanisms are incompletely understood. Herein, we showed that MSCs restored the impaired autophagic flux and alleviated liver injuries in ACLF mice, but these effects were abolished when autophago-lysosomal maturation was inhibited by leupeptin (leu), suggesting that MSCs exerted their hepatoprotective function in a pro-autophagic dependent manner. Moreover, we described a connection between transcription factor EB (TFEB) and autophagic activity in this context, as evidenced by increased nuclei translocation of TFEB elicited by MSCs were capable of promoting liver autophagy. Mechanistically, we confirmed that let-7a-5p enriched in MSCs derived exosomes (MSC-Exo) could activate autophagy by targeting MAP4K3 to reduce TFEB phosphorylation, and MAP4K3 knockdown partially attenuates the effect of anti-let-7a-5p oligonucleotide via decreasing the inflammatory response, in addition, inducing autophagy. Altogether, these findings revealed that the hepatoprotective effect of MSCs may partially profit from its exosomal let-7a-5p mediating autophagy repairment, which may provide new insights for the therapeutic target of ACLF treatment.


Assuntos
Insuficiência Hepática Crônica Agudizada , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células-Tronco Mesenquimais , MicroRNAs/genética , Insuficiência Hepática Crônica Agudizada/genética , Insuficiência Hepática Crônica Agudizada/metabolismo , Animais , Autofagia , Leupeptinas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Oligonucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA