Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Pharm ; 655: 124016, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38503397

RESUMO

Triple negative breast cancer (TNBC) presents a formidable challenge due to its low sensitivity to many chemotherapeutic drugs and a relatively low overall survival rate in clinical practice. Photothermal therapy has recently garnered substantial interest in cancer treatment, owing to its swift therapeutic effectiveness and minimal impact on normal cells. Metal-polyphenol nanostructures have recently garnered significant attention as photothermal transduction agents due to their facile preparation and favorable photothermal properties. In this study, we employed a coordinated approach involving Fe3+ and apigenin, a polyphenol compound, to construct the nanostructure (nFeAPG), with the assistance of ß-CD and DSPE-PEG facilitating the formation of the complex nanostructure. In vitro research demonstrated that the formed nFeAPG could induce cell death by elevating intracellular oxidative stress, inhibiting antioxidative system, and promoting apoptosis and ferroptosis, and near infrared spectrum irradiation further strengthen the therapeutic outcome. In 4T1 tumor bearing mice, nFeAPG could effectively accumulate into tumor site and exhibit commendable control over tumor growth. Futher analysis demonstrated that nFeAPG ameliorated the suppressed immune microenvironment by augmenting the response of DC cells and T cells. This study underscores that nFeAPG encompasses a multifaceted capacity to combat TNBC, holding promise as a compelling therapeutic strategy for TNBC treatment.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Apigenina , Ferro , Linhagem Celular Tumoral , Polifenóis , Microambiente Tumoral
3.
J Control Release ; 362: 468-478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666304

RESUMO

Psoriasis is a multifactorial immuno-inflammatory skin disease, characterized by keratinocyte hyperproliferation and aberrant immune activation. Although the pathogenesis is complex, the interactions among inflammation, Th17-mediated immune activation, and keratinocyte hyperplasia are considered to play a crucial role in the occurrence and development of psoriasis. Therefore, pharmacological interventions on the "inflammation-Th17-keratinocyte" vicious cycle may be a potential strategy for psoriasis treatment. In this study, JPH203 (a specific inhibitor of LAT1, which engulfs leucine to activate mTOR signaling)-loaded, ultraviolet B (UVB) radiation-induced, keratinocyte-derived extracellular vesicles (J@EV) were prepared for psoriasis therapy. The EVs led to increased interleukin 1 receptor antagonist (IL-1RA) content due to UVB irradiation, therefore not only acting as a carrier for JPH203 but also functioning through inhibiting the IL-1-mediated inflammation cascade. J@EV effectively restrained the proliferation of inflamed keratinocytes via suppressing mTOR-signaling and NF-κB pathway in vitro. In an imiquimod-induced psoriatic model, J@EV significantly ameliorated the related symptoms as well as suppressed the over-activated immune reaction, evidenced by the decreased keratinocyte hyperplasia, Th17 expansion, and IL17 release. This study shows that J@EV exerts therapeutic efficacy for psoriasis by suppressing LAT1-mTOR involved keratinocyte hyperproliferation and Th17 expansion, as well as inhibiting IL-1-NF-κB mediated inflammation, representing a novel and promising strategy for psoriasis therapy.

4.
Adv Healthc Mater ; 12(24): e2300571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236618

RESUMO

Acute liver failure (ALF) is a severe liver disease caused by many reasons. One of them is the overdosed acetaminophen (APAP), which is metabolized into N-acetyl-p-benzoquinone imine (NAPQI), an excessive toxic metabolite, by CYP2E1, resulting in excessive reactive oxygen species (ROS), exhausted glutathione (GSH), and thereafter hepatocyte necrosis. N-acetylcysteine is the Food and Drug Administration-approved drug for detoxification of APAP, but it has limited clinical application due to the short therapeutic time window and concentration-related adverse effects. In this study, a carrier-free and bilirubin dotted nanoparticle (B/BG@N) is developed, which is formed using bilirubin and 18ß-Glycyrrhetinic acid, and bovine serum albumin (BSA) is then adsorbed to mimic the in vivo behavior of the conjugated bilirubin for hitchhiking. The results demonstrate that B/BG@N can effectively reduce the production of NAPQI as well as exhibit antioxidant effects against intracellular oxidative stress via regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signal axis and reducing the production of inflammatory factors. In vivo study shows that B/BG@N can effectively improve the clinical symptom of the mice model. This study suggests that B/BG@N own increases circulation half-life, improves accumulation in the liver, and dual detoxification, providing a promising strategy for clinical ALF treatment.


Assuntos
Acetaminofen , Falência Hepática Aguda , Animais , Camundongos , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Fígado/metabolismo , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Glutationa/metabolismo , Bilirrubina/metabolismo , Bilirrubina/farmacologia
5.
Int J Pharm ; 641: 123082, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244464

RESUMO

Oxaliplatin (OXA) resistance remains the major obstacle to the successful chemotherapy of colorectal cancer (CRC). As a self-protection mechanism, autophagy may contribute to tumor drug resistance, therefore autophagy suppression could be regarded as a possible treatment option in chemotherapy. Cancer cells, especially drug-resistant tumor cells, increase their demand for specific amino acids by expanding exogenous supply and up-regulating de novo synthesis, to meet the needs for excessive proliferation. Therefore, it is possible to inhibit cancer cell proliferation through pharmacologically blocking the entry of amino acid into cancer cells. SLC6A14 (ATB0,+) is an essential amino acid transporter, that is often abnormally up-regulated in most cancer cells. Herein, in this study, we designed oxaliplatin/berbamine-coloaded, ATB0,+-targeted nanoparticles ((O + B)@Trp-NPs) to therapeutically target SLC6A14 (ATB0,+) and inhibit cancer proliferation. The (O + B)@Trp-NPs utilize the surface-modified tryptophan to achieve SLC6A14-targeted delivery of Berbamine (BBM), a compound that is found in a number of plants used in traditional Chinese medicine, which could suppress autolysosome formation though impairing autophagosome-lysosome fusion. We verified the feasibility of this strategy to overcome the OXA resistance during colorectal cancer treatment. The (O + B)@Trp-NPs significantly inhibited the proliferation and decreased the drug resistance of resistant colorectal cancer cells. In vivo, (O + B)@Trp-NPs greatly suppressed the tumor growth in tumor-bearing mice, which is consistent with the in vitro data. This research offers a unique and promising chemotherapeutic treatment for colorectal cancer.


Assuntos
Neoplasias Colorretais , Nanopartículas , Animais , Camundongos , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
6.
Front Pharmacol ; 12: 625084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815107

RESUMO

Pancreatic cancer (PC) is one of the most common malignancies and also a leading cause of cancer-related mortality worldwide. Many studies have shown that epidermal growth factor receptor (EGFR) is highly expressed in PC, which provides a potential target for PC treatment. However, EGFR inhibitors use alone was proven ineffective in clinical trials, due to the persistence of cellular feedback mechanisms which foster therapeutic resistance to single targeting of EGFR. Specifically, the signal transducer and activator of transcription 3 (STAT3) is over-activated when receiving an EGFR inhibitor and is believed to be highly involved in the failure and resistance of EGFR inhibitor treatment. Therein, we hypothesized that dual inhibition of EGFR and STAT3 strategy could address the STAT3 induced resistance during EGFR inhibitor treatment. To this end, we tried to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles to co-load Alantolactone (ALA, a novel STAT3 inhibitor) and Erlotinib (ERL, an EGFR inhibitor) for pancreatic cancer to test our guess. The loading ratio of ALA and ERL was firstly optimized in vitro to achieve a combined cancer-killing effect. Then, the ALA- and ERL-co-loaded nanoparticles (AE@NPs) were successfully prepared and characterized, and the related anticancer effects and cellular uptake of AE@NPs were studied. We also further detailly explored the underlying mechanisms. The results suggested that AE@NPs with uniform particle size and high drug load could induce significant pancreatic cancer cell apoptosis and display an ideal anticancer effect. Mechanism studies showed that AE@NPs inhibited the phosphorylation of both EGFR and STAT3, indicating the dual suppression of these two signaling pathways. Additionally, AE@NPs could also activate the ROS-p38 axis, which is not observed in the single drug treatments. Collectively, the AE@NPs prepared in this study possess great potential for pancreatic cancer treatment by dual suppressing of EGFR and STAT3 pathways and activating ROS-responsive p38 MAPK pathway.

7.
Bioorg Med Chem Lett ; 33: 127728, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346010

RESUMO

Triptolide (TP) is a diterpene epoxide component extracted from Tripterygium wilfordii and has been shown to possess an impressive anticancer effect. However, TP has not yet entered any clinic trials due to the severe adverse effects that resulted from the off-target absorption and distribution found in animal studies. In this study, we designed and synthesized three amino acids (tryptophan, valine, and lysine) based TP prodrugs to target ATB0,+ which are highly expressed in pancreatic cancer cells for more effective pancreatic cancer therapy. The stability, uptake profiles, uptake mechanism, and cancer-killing ability were studied in vitro. All three prodrugs showed increased uptake and enhanced cytotoxicity in pancreatic cancer cells, but not in normal pancreatic cells. The difference in killing effect on normal and cancer cells was attributed to pancreatic cancer over-expressed ATB0,+-mediated uptake. Specifically, tryptophan-conjugated TP prodrug (TP-Trp) showed the highest uptake and the best cancer cell killing effect, considered as the best candidate. The present study provided the proof-of-concept of exploiting TP prodrug to target ATB0,+ for pancreatic cancer-selective delivery and treatment.


Assuntos
Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Fenantrenos/farmacologia , Pró-Fármacos/farmacologia , Sistemas de Transporte de Aminoácidos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Humanos , Conformação Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenantrenos/síntese química , Fenantrenos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
8.
Mol Med Rep ; 18(2): 1455-1464, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29901080

RESUMO

Physical exercise is beneficial for the functional recovery of neurons after stroke. It has been suggested that exercise regulates proliferation and differentiation of endogenous neural stem cells (NSCs); however, the underlying molecular mechanisms are still largely unknown. In the present study, the aim was to investigate whether physical exercise activates the extracellular signal­regulated kinase (ERK) signaling pathway to promote proliferation and differentiation of NSCs in rats with cerebral infarction, thereby improving neurological function. Following middle cerebral artery occlusion, rats underwent physical exercise and neurological behavior was analyzed at various time points. Immunofluorescence staining was performed to detect proliferation and differentiation of NSCs, and western blotting was used to analyze cyclin­dependent kinase 4 (CDK4), Cyclin D1, retinoblastoma protein (p­Rb), P­16, phosphorylated (p)­ERK1/2 and c­Fos expression. The results indicated that physical exercise promoted proliferation and differentiation of NSCs, and led to improved neural function. In addition, the expression levels of CDK4, Cyclin D1, p­Rb, p­ERK1/2 and c­Fos were upregulated, whereas the expression of P­16 was downregulated following exercise. U0126, an inhibitor of ERK signaling, reversed the beneficial effects of exercise. Therefore, it may be hypothesized that physical exercise enhances proliferation and differentiation of endogenous NSCs in the hippocampus of rats with cerebral infarction via the ERK signaling pathway.


Assuntos
Infarto da Artéria Cerebral Média/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Células-Tronco Neurais/metabolismo , Condicionamento Físico Animal , Animais , Butadienos/farmacologia , Diferenciação Celular , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipocampo/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Artéria Cerebral Média/cirurgia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células-Tronco Neurais/patologia , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais
9.
J Mater Sci Mater Med ; 27(4): 73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886821

RESUMO

In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Hidrogéis/química , Poliésteres/química , Polietilenoglicóis/química , alfa-Ciclodextrinas/química , Adjuvantes Farmacêuticos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Injeções , Neoplasias Pulmonares , Teste de Materiais , Micelas , Microscopia Eletrônica de Varredura , Difração de Raios X
10.
J Microencapsul ; 30(6): 538-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23489016

RESUMO

Biotin was conjugated on poloxamer to prepare biotin-poloxamer (BP) conjugate micelles for chemotherapeutics. Epirubicin (EPI) was encapsulated in BP micelles. The EPI-loaded BP micelles were characterized in terms of size, ζ-potential, morphology, drug loading, drug encapsulation and drug release. Marrow leukemic HL-60 cells were used for evaluating the in vitro cytotoxicity of EPI-loaded BP micelles. Nude mice were axillainoculated subcutaneously HL-60 cells to establish tumour model for investigating the inhibition effects of EPI-loaded BP micelles. From the results, the sizes of these nanoparticles were about 100 nm. Fluorescence microscope observation supported the enhanced cellular uptake of the micelles. The order of the inhibition on tumour volume growth was: EPI-loaded BP micelles >EPI-loaded MATP micelles >EPI-loaded poloxamer micelles >EPI. BP micelles showed significant antitumour activity and low toxicity, compared with the non-targeted micelles. With the advantage of EPR effect and tumour-targeting potential, BP conjugate micelles might be developed as a new system for chemotherapeutics.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Biotina/química , Epirubicina/administração & dosagem , Micelas , Neoplasias/tratamento farmacológico , Poloxâmero/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Epirubicina/farmacocinética , Epirubicina/uso terapêutico , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/patologia
11.
Drug Dev Ind Pharm ; 39(11): 1712-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23062067

RESUMO

Characterization and antitumor activity of basic fibroblast growth factor-mediated active targeting doxorubicin microbubbles (bFGF-DOX-MB) were investigated. Pluronic F68 with chemical conjugation of doxorubicin (DOX-P) and peptide KRTGQYKLC-conjugated DSPE-PEG2000 were prepared. bFGF-DOX-MB had a normal distribution of particle size, with average particle size of 2.7 µm. Using A549 mouse model, bFGF-DOX-MB combined ultrasound showed the best inhibition effect on tumor volume growth among all the test groups. Similar conclusion was obtained from experimental measurements of tumor weight change and blood cell count. From the results, chemotherapeutic drug inhibition on tumor growth could be enhanced by local ultrasound combined with active targeting bFGF-DOX-MB, which might provide a potential application for ultrasound-mediated chemotherapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Microbolhas/uso terapêutico , Oligopeptídeos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/efeitos adversos , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/efeitos adversos , Estudos de Viabilidade , Fator 2 de Crescimento de Fibroblastos/efeitos adversos , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Microbolhas/efeitos adversos , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/efeitos adversos , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Domínios e Motivos de Interação entre Proteínas , Distribuição Aleatória , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA