Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancer Cell Int ; 24(1): 177, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773440

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors worldwide, with extremely aggressive and complicated biology. Krüppel-like factors (KLFs) encode a series of transcriptional regulatory proteins and play crucial roles in a variety of processes, including tumor cell differentiation and proliferation. However, the potential biological functions and possible pathways of KLFs in the progression of PDAC remain elusive. METHODS: We systematically evaluated the transcriptional variations and expression patterns of KLFs in pancreatic cancer from the UCSC Xena. Based on difference analysis, the non-negative matrix factorization (NMF) algorithm was utilized to identify the immune characteristics and clinical significance of two different subtypes. The multivariate Cox regression was used to construct the risk model and then explore the differences in tumor immune microenvironment (TIME) and drug sensitivity between high and low groups. Through single-cell RNA sequencing (scRNA-seq) analysis, we screened KLF6 and further investigated its biological functions in pancreatic cancer and pan-cancer. RESULTS: The KLFs exhibited differential expression and mutations in the transcriptomic profile of PDAC. According to the expression of KLFs, patients were classified into two distinct subtypes, each exhibiting significant differences in prognosis and TIME. Moreover, the KLF signature was developed using univariate Cox and Lasso regression, which proved to be a reliable and effective prognostic model. Furthermore, the KLF_Score was closely associated with immune infiltration, response to immunotherapy, and drug sensitivity and we screened small molecule compounds targeting prognostic genes separately. Through scRNA-seq analysis, KLF6 was selected to further demonstrate its role in the malignance of PC in vitro. Finally, pan-cancer analysis emphasized the biological significance of KLF6 in multiple types of tumors and its clinical utility in assessing cancer prognosis. CONCLUSION: This study elucidated the pivotal role of KLF family genes in the malignant development of PC through comprehensive analysis and revealed that KLF6 would be a novel diagnostic biomolecule marker and potential therapeutic target for PDAC.

2.
World J Gastroenterol ; 30(16): 2209-2219, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38690022

RESUMO

Laryngopharyngeal reflux disease (LPRD) is an inflammatory condition in the laryngopharynx and upper aerodigestive tract mucosa caused by reflux of stomach contents beyond the esophagus. LPRD commonly presents with sym-ptoms such as hoarseness, cough, sore throat, a feeling of throat obstruction, excessive throat mucus. This complex condition is thought to involve both reflux and reflex mechanisms, but a clear understanding of its molecular mechanisms is still lacking. Currently, there is no standardized diagnosis or treatment protocol. Therapeutic strategies for LPRD mainly include lifestyle modifications, proton pump inhibitors and endoscopic surgery. This paper seeks to provide a comprehensive overview of the existing literature regarding the mechanisms, patho-physiology and treatment of LPRD. We also provide an in-depth exploration of the association between LPRD and gastroesophageal reflux disease.


Assuntos
Refluxo Gastroesofágico , Refluxo Laringofaríngeo , Inibidores da Bomba de Prótons , Humanos , Refluxo Laringofaríngeo/fisiopatologia , Refluxo Laringofaríngeo/diagnóstico , Refluxo Laringofaríngeo/terapia , Refluxo Gastroesofágico/fisiopatologia , Refluxo Gastroesofágico/terapia , Refluxo Gastroesofágico/diagnóstico , Inibidores da Bomba de Prótons/uso terapêutico , Resultado do Tratamento , Estilo de Vida
3.
J Exp Clin Cancer Res ; 43(1): 125, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664705

RESUMO

BACKGROUND: Immunotherapy has emerged as a potent clinical approach for cancer treatment, but only subsets of cancer patients can benefit from it. Targeting lactate metabolism (LM) in tumor cells as a method to potentiate anti-tumor immune responses represents a promising therapeutic strategy. METHODS: Public single-cell RNA-Seq (scRNA-seq) cohorts collected from patients who received immunotherapy were systematically gathered and scrutinized to delineate the association between LM and the immunotherapy response. A novel LM-related signature (LM.SIG) was formulated through an extensive examination of 40 pan-cancer scRNA-seq cohorts. Then, multiple machine learning (ML) algorithms were employed to validate the capacity of LM.SIG for immunotherapy response prediction and survival prognostication based on 8 immunotherapy transcriptomic cohorts and 30 The Cancer Genome Atlas (TCGA) pan-cancer datasets. Moreover, potential targets for immunotherapy were identified based on 17 CRISPR datasets and validated via in vivo and in vitro experiments. RESULTS: The assessment of LM was confirmed to possess a substantial relationship with immunotherapy resistance in 2 immunotherapy scRNA-seq cohorts. Based on large-scale pan-cancer data, there exists a notably adverse correlation between LM.SIG and anti-tumor immunity as well as imbalance infiltration of immune cells, whereas a positive association was observed between LM.SIG and pro-tumorigenic signaling. Utilizing this signature, the ML model predicted immunotherapy response and prognosis with an AUC of 0.73/0.80 in validation sets and 0.70/0.87 in testing sets respectively. Notably, LM.SIG exhibited superior predictive performance across various cancers compared to published signatures. Subsequently, CRISPR screening identified LDHA as a pan-cancer biomarker for estimating immunotherapy response and survival probability which was further validated using immunohistochemistry (IHC) and spatial transcriptomics (ST) datasets. Furthermore, experiments demonstrated that LDHA deficiency in pancreatic cancer elevated the CD8+ T cell antitumor immunity and improved macrophage antitumoral polarization, which in turn enhanced the efficacy of immunotherapy. CONCLUSIONS: We unveiled the tight correlation between LM and resistance to immunotherapy and further established the pan-cancer LM.SIG, holds the potential to emerge as a competitive instrument for the selection of patients suitable for immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Prognóstico , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/mortalidade , Neoplasias/metabolismo , Neoplasias/genética , Ácido Láctico/metabolismo , Camundongos , Animais , Feminino
4.
Plant Commun ; 5(1): 100659, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434356

RESUMO

Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Vírus de RNA de Cadeia Positiva , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Vírus de RNA de Cadeia Positiva/metabolismo , Ácidos Fosfatídicos , Sistema de Sinalização das MAP Quinases , Fosforilação
5.
Adv Sci (Weinh) ; 11(4): e2305175, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036420

RESUMO

Female fecundity declines in a nonlinear manner with age during the reproductive years, even as ovulatory cycles continue, which reduces female fertility, disrupts metabolic homeostasis, and eventually induces various chronic diseases. Despite this, the aging-related cellular and molecular changes in human ovaries that occur during these reproductive years have not been elucidated. Here, single-cell RNA sequencing (scRNA-seq) of human ovaries is performed from different childbearing ages and reveals that the activation of the pyroptosis pathway increased with age, mainly in macrophages. The enrichment of pyroptotic macrophages leads to a switch from a tissue-resident macrophage (TRM)-involve immunoregulatory microenvironment in young ovaries to a pyroptotic monocyte-derived macrophage (MDM)-involved proinflammatory microenvironment in middle-aged ovaries. This remolded ovarian immuno-microenvironment further promotes stromal cell senescence and accelerated reproductive decline. This hypothesis is validated in a series of cell and animal experiments using GSDMD-KO mice. In conclusion, the work expands the current understanding of the ovarian aging process by illustrating a pyroptotic macrophage-involved immune mechanism, which has important implications for the development of novel strategies to delay senescence and promote reproductive health.


Assuntos
Envelhecimento , Ovário , Pessoa de Meia-Idade , Humanos , Feminino , Camundongos , Animais , Ovário/metabolismo , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Macrófagos/metabolismo , Piroptose
6.
Cell Oncol (Dordr) ; 47(3): 939-950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38097870

RESUMO

PURPOSE: Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS: In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS: According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION: Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.


Assuntos
Fator 3 Ativador da Transcrição , Resistencia a Medicamentos Antineoplásicos , NF-kappa B , Neoplasias Pancreáticas , Inibidores de Poli(ADP-Ribose) Polimerases , Transdução de Sinais , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , NF-kappa B/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Ftalazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Piperazinas/farmacologia
7.
J Exp Clin Cancer Res ; 42(1): 339, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098044

RESUMO

BACKGROUND: Within the tumor immune microenvironment (TME), tumor-associated macrophages (TAMs) are crucial in modulating polarization states to influence cancer development through metabolic reprogramming. While long non-coding RNAs (lncRNAs) have been shown to play a pivotal role in the progression of various cancers, the underlying mechanisms by which lncRNAs alter M2 polarization through macrophage metabolism remodeling remain unelucidated. METHODS: RNA sequencing was used to screen for differentially expressed lncRNAs in TAMs and normal tissue-resident macrophages (NTRMs) isolated from pancreatic ductal adenocarcinoma (PDAC) tissues, whilst RT-qPCR and FISH were employed to detect the expression level of SNHG17. Moreover, a series of in vivo and in vitro experiments were conducted to assess the functions of SNHG17 from TAMs in the polarization and glycolysis of M2-like macrophages and in the proliferation and metastasis of pancreatic cancer cells (PCs). Furthermore, Western blotting, RNA pull-down, mass spectrometry, RIP, and dual-luciferase assays were utilized to explore the underlying mechanism through which SNHG17 induces pro-tumor macrophage formation. RESULTS: SNHG17 was substantially enriched in TAMs and was positively correlated with a worse prognosis in PDAC. Meanwhile, functional assays determined that SNHG17 promoted the malignant progression of PCs by enhancing M2 macrophage polarization and anaerobic glycolysis. Mechanistically, SNHG17 could sponge miR-628-5p to release PGK1 mRNA and concurrently interact with the PGK1 protein, activating the pro-tumorigenic function of PGK1 by enhancing phosphorylation at the T168A site of PGK1 through ERK1/2 recruitment. Lastly, SNHG17 knockdown could reverse the polarization status of macrophages in PDAC. CONCLUSIONS: The present study illustrated the essential role of SNHG17 and its molecular mechanism in TAMs derived from PDAC, indicating that SNHG17 might be a viable target for PDAC immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Fosforilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Anaerobiose , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Macrófagos/metabolismo , Glicólise , MicroRNAs/genética , Microambiente Tumoral , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo
8.
Cell Discov ; 9(1): 95, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714834

RESUMO

The extensively activated Notch signaling pathway in pancreatic cancer cells is important in carcinogenesis, chemoresistance, and recurrence. Targeting this pathway is a promising therapeutic strategy for pancreatic cancer; however, few successful approaches have been reported, and currently used molecular inhibitors of this pathway exhibit limited clinical benefits. In this study, we identified a previously uncharacterized microprotein, Notch1 degradation-associated regulatory polypeptide (N1DARP), encoded by LINC00261. N1DARP knockout accelerated tumor progression and enhanced stem cell properties in pancreatic cancer organoids and LSL-Kras, LSL-Trp53, and Pdx1-Cre (KPC) mice. Mechanistically, N1DARP suppressed canonical and non-canonical Notch1 pathways by competitively disrupting the interaction between N1ICD and ubiquitin-specific peptidase 10 (USP10), thereby promoting K11- and K48-linked polyubiquitination of N1ICD. To evaluate the therapeutic potential of N1DARP, we designed a cell-penetrating stapled peptide, SAH-mAH2-5, with a helical structure similar to that of N1DARP that confers remarkable physicochemical stability. SAH-mAH2-5 interacted with and promoted the proteasome-mediated degradation of N1ICD. SAH-mAH2-5 injection provided substantial therapeutic benefits with limited off-target and systemic adverse effects in Notch1-activated pancreatic cancer models. Taken together, these findings confirm that N1DARP acts as a tumor suppressor and chemosensitizer by regulating USP10-Notch1 oncogenic signaling, and suggest a promising therapeutic strategy targeting the N1DARP-N1ICD interaction in Notch1-activated pancreatic cancer.

10.
Front Surg ; 10: 1201992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425348

RESUMO

Introduction: Mesh fixation is an important step in incisional hernia repair. Weak fixation possibly results in postoperative pain, and even hernia recurrence. We innovated an auxiliary fixation approach, the magnet attraction technique (MAT), to achieve better mesh fixation. The purpose of this study was to evaluate the effect of MAT in intraperitoneal onlay mesh (IPOM) procedures for incisional hernia repair. Methods: Historical patient records were analyzed according to the clinical data of 16 patients with incisional hernias. Among them, 5 patients have undergone IPOM repair procedures in combination with MAT to assist in mesh fixation. As a control, 11 patients treated with IPOM and mesh fixation via conventional suspension were included. The clinical data collected include patients' basic characteristics, intraoperative and postoperative conditions, and follow-up results in both groups. Results: Compared with patients in the control group, patients in the MAT group were found to suffer from a larger hernia ring diameter and longer surgical duration, but shorter hospitalization length on average. And most importantly, no complication has been reported in the MAT group. Conclusion: MAT in IPOM operation was regarded as a feasible and safe technique for patients suffering from incisional hernias.

11.
Environ Res ; 222: 115346, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702189

RESUMO

Large amounts of microplastics (MPs) enter the soil along with the amendment of sludge to soil. However, it is still unclear about the response of MPs occurrence and the adsorption behaviors of cadmium (Cd)on MPs to typical agricultural environmental scenarios. In present work, three kinds of MPs (polyethylene, polypropylene, and polystyrene) were chosen to investigate that response in three agricultural environmental scenarios with sludge-amended soil, including dry-wet alteration (7 d, five cycles), microbial addition (Bacillus subtilis, 0.05 g/g soil), and Ultraviolet (UV) irradiation (340 nm, 4 × 15 W, 4 d). The results showed that there was the highest adsorption capacity of Cd on MPs (36.21, 45.15, 12.43 µg/g for PE, PP, PS, respectively) after UV irradiation exceeding those from MPs triggered by other two scenarios). UV irradiation caused an increase in the abundance of Streptomyces, an expansion in specific surface area, a significant change in surface morphologies, an improvement in crystallinity or the formation of new crystals, and an enhancement in C-O and CO content, and then resulted in the incremental adsorption capacity of Cd on MPs. The findings are important of significance for controlling the environmental risks from sludge MPs via carrying heavy metals in the soil-plant systems.


Assuntos
Microplásticos , Poluentes do Solo , Plásticos , Cádmio , Solo , Esgotos , Poluentes do Solo/análise
12.
Environ Pollut ; 315: 120410, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240968

RESUMO

Metallothioneins (MTs), a group of cysteine-rich proteins, are effective chelators of cadmium (Cd) and play a key role in plant Cd detoxification. However, little is known about the role of single cysteine (Cys) residues in the MTs involved in the adaptation of plants to Cd stress, especially, in hyperaccumulators. In the present study, we functionally characterised SaMT3 in S. alfredii, a Cd/Zn hyperaccumulator native to China. Our results showed that the C- and N- terminal regions of SaMT3 had differential functional natures in S. alfredii and determined its Cd hypertolerance and detoxification. Two CXC motifs within the C-terminal region were revealed to play a crucial role in Cd sensing and binding, whereas the four Cys-residues within the N-terminal region were involved in scavenging reactive oxygen species (ROS). An S. alfredii transgenic system based on callus transformation was developed to further investigate the in-planta gene function. The SaMT3-overexpressing transgenic plant roots were more tolerant to Cd than those of wild-type plants. Knockout of SaMT3 resulted in significantly decreased Cd concentrations and increased ROS levels after exposure to Cd stress. We demonstrated the SaMT3-mediated adaptation strategy in S. alfredii, which uses metal chelation and ROS scavenging in response to Cd stress. Our results further reveal the molecular mechanisms underlying Cd detoxification in hyperaccumulating plants, as well as the relation between Cys-related motifs and the metal binding properties of MTs. This research provides valuable insights into the functions of SaMT3 in S. alfredii, and improves our understanding of Cd hyperaccumulation in plants.


Assuntos
Sedum , Poluentes do Solo , Sedum/genética , Sedum/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Metalotioneína/metabolismo , Quelantes/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biodegradação Ambiental
13.
J Environ Manage ; 322: 116113, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055089

RESUMO

The complicated contamination of microplastics (MPs) and heavy metals in sludge has garnered substantial attention in recent years; however, research on the behavior of MPs loading of heavy metals in sludge after sludge treatment methods is limited. Four representative sludge treatment methods were selected herein: anaerobic digestion, thermal drying, thermal hydrolysis (TH), and aerobic composting. Before and after sludge treatment, the chemical bonding of MPs, cadmium (Cd) adsorption properties, and metabolic changes in the microbial community succession was analyzed, and the factors influencing differences in Cd sorption by sludge MPs were explored. The results revealed that Cd adsorption by MPs occurs as multilayer physical adsorption that can be well fitted by Freundlich isotherms. Compared with the other three treatments, TH led to the most significant effect on the chemical bonding properties of the MPs, with a more than two-fold increase in C-O single bonds and CO double bonds, as well as adsorption of the highest amount of Cd at 767 µg/g. In addition, sludge conductivity and water content also affected Cd sorption capacity, with correlation coefficients of 0.405 and -0.384. Pedobacter, Flavobacterium, Lysobacter, and Sphingobacterium in the sludge presented a high degree of coupling with adsorption capacity, it was inferred that the above dominant species of bacteria may affect the adsorption of Cd by microplastics through the production of extracellular enzyme forms.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio/química , Microplásticos , Plásticos/química , Esgotos , Água , Poluentes Químicos da Água/análise
14.
Biochem Pharmacol ; 204: 115197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926651

RESUMO

Memory CD8+T cells participate in the fight against infection and tumorigenesis as well as in autoimmune disease progression because of their efficient and rapid immune response, long-term survival, and continuous differentiation. At each stage of their formation, maintenance, and function, the cell metabolism must be adjusted to match the functional requirements of the specific stage. Notably, enhanced glycolytic metabolism can generate sufficient levels of adenosine triphosphate (ATP) to form memory CD8+T cells, countering the view that glycolysis prevents the formation of memory CD8+T cells. This review focuses on how glycometabolism regulates memory CD8+T cells and highlights the key mechanisms through which the mammalian target of rapamycin (mTOR) signaling pathway affects memory CD8+T cell formation, maintenance, and function by regulating glycometabolism. In addition, different subpopulations of memory CD8+T cells exhibit different metabolic flexibility during their formation, survival, and functional stages, during which the energy metabolism may be critical. These findings which may explain why enhanced glycolytic metabolism can give rise to memory CD8+T cells. Modulating the metabolism of memory CD8+T cells to influence specific cell fates may be useful for disease treatment.


Assuntos
Memória Imunológica , Serina-Treonina Quinases TOR , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD8-Positivos , Diferenciação Celular , Glicólise , Camundongos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo
16.
J Transl Med ; 20(1): 218, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562743

RESUMO

BACKGROUND: Early diagnosis and treatment of chronic pancreatitis (CP) are limited. In this study, St13, a co-chaperone protein, was investigated whether it constituted a novel regulatory target in CP. Meanwhile, we evaluated the value of micro-PET/CT in the early diagnosis of CP. METHODS: Data from healthy control individuals and patients with alcoholic CP (ACP) or non-ACP (nACP) were analysed. PRSS1 transgenic mice (PRSS1Tg) were treated with ethanol or caerulein to mimic the development of ACP or nACP, respectively. Pancreatic lipid metabolite profiling was performed in human and PRSS1Tg model mice. The potential functions of St13 were investigated by crossing PRSS1Tg mice with St13-/- mice via immunoprecipitation and lipid metabolomics. Micro-PET/CT was performed to evaluate pancreatic morphology and fibrosis in CP model. RESULTS: The arachidonic acid (AA) pathway ranked the most commonly dysregulated lipid pathway in ACP and nACP in human and mice. Knockout of St13 exacerbated fatty replacement and fibrosis in CP model. Sdf2l1 was identified as a binding partner of St13 as it stabilizes the IRE1α-XBP1s signalling pathway, which regulates COX-2, an important component in AA metabolism. Micro-PET/CT with 68Ga-FAPI-04 was useful for evaluating pancreatic morphology and fibrosis in CP model mice 2 weeks after modelling. CONCLUSION: St13 is functionally activated in acinar cells and protects against the cellular characteristics of CP by binding Sdf2l1, regulating AA pathway. 68Ga-FAPI-04 PET/CT may be a very valuable approach for the early diagnosis of CP. These findings thus provide novel insights into both diagnosis and treatment of CP.


Assuntos
Células Acinares , Endorribonucleases , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Ácido Araquidônico/metabolismo , Proteínas de Transporte/metabolismo , Endorribonucleases/metabolismo , Fibrose , Radioisótopos de Gálio , Camundongos Knockout , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Serina-Treonina Quinases , Tripsina/metabolismo , Proteínas Supressoras de Tumor/metabolismo
17.
Biomed Mater ; 16(6)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34670204

RESUMO

Collagen and chitosan are two different kinds of natural biodegradable polymers commonly used in the regeneration of bone defects. Mesoporous bioactive glass (MBG) is a type of favorable bone filler which can effectively constitute an enlarged microenvironment to facilitate an exchange of important factors between the cells and scaffolds. Here we prepared a collagen-chitosan-MBG (C-C-MBG) scaffold which displayed significantly increased proliferation, differentiation and mineralization in bone mesenchymal stem cells (BMSCs). Additionally, we found that the scaffold can stimulate extra-cellular signal regulated kinase 1/2 (Erk1/2) activated Runx2 pathway, which is the predominant signaling pathway involved in osteoblast differentiation. Consistently, we observed that the scaffold can markedly enhance the expression ofType I collagen, Osteopontin(Opn), andRunx2, which are important osteoblastic marker genes implicated in the process of osteoblast differentiation. Therefore, we conclude that the composite scaffold can significantly promote the differentiation of BMSCs into osteoblasts by activating Erk1/2-Runx2 pathway. Our finding thereby implies that the C-C-MBG scaffold can possibly act as a potential biomaterial in the bone regeneration.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Diferenciação Celular , Colágeno/metabolismo , Vidro , Osteoblastos , Osteogênese , Porosidade , Alicerces Teciduais
18.
ACS Sens ; 6(9): 3424-3435, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34415143

RESUMO

Dynamic changes in the tumor-associated fibroblast activation protein (FAP) expression in tumors of different stages may be helpful for prognostic evaluation and treatment response monitoring, making this protein a promising surveillance biomarker for timely diagnosis of malignant tumors and effective planning of patient care. To prospectively verify the diagnostic efficacy value of the developed FAP tracers, [68Ga]Ga-FAPtp and [68Ga]Ga-Alb-FAPtp-01, dynamic/static positron emission tomography (PET)/computed tomography scans were acquired for tumor-targeting studies in vivo and in comparison with the well-established clinically used tracer [68Ga]Ga-FAPI-04. The optimized rationally designed FAP-targeting PET tracer, [68Ga]Ga-Alb-FAPtp-01, with albumin-binding capability demonstrated prominent tumor uptake over time. The mean standard uptake value (SUV) and the tumor/muscle (T/M) ratio were as high as 1.775 ± 0.179 SUV and T/M = 5.9, 1.533 ± 0.222 SUV and T/M = 6.7, and 1.425 ± 0.204 SUV and T/M = 9.5, respectively, at 1, 2, and 3 h. Its improved tumor uptake and pharmacokinetics suggest that the [68Ga]Ga-Alb-FAPtp-01 tracer can noninvasively detect FAP activation in vivo, permitting a precise definition of its roles in tumors of different stages and yielding insights regarding FAP-targeted radiotherapeutic strategies at the molecular level.


Assuntos
Fibroblastos Associados a Câncer , Glioma , Radioisótopos de Gálio , Humanos , Tomografia por Emissão de Pósitrons , Quinolinas
19.
Can J Gastroenterol Hepatol ; 2020: 8838613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354558

RESUMO

Objective: We aim to analyze the diagnostic yield, diagnostic accuracy, and delayed diagnosis of patients with terminal ileum lesions, providing follow-up suggestions for suspected patients. Methods: We carried out an analysis of 1099 patients who had terminal ileum lesions in our hospital from 2009 to 2019. The endoscopy reports and histopathology reports of terminal ileal biopsies were recorded. Clinical diagnosis and management were reviewed to determine whether there was a need to correct after a follow-up endoscopy result. Results: A total of 1099 patients were found to have terminal ileum lesions, among which 959 in 1099 patients (87.26%) were diagnosed as benign, 17 in 1099 patients (1.55%) were diagnosed as malignant, and 123 in 1099 patients (11.19%) were diagnosed as suspected. The diagnostic accuracies of terminal ileal polyp, cyst, cancer, eosinophilic enteritis, parasite, lymphofollicular hyperplasia, and amyloidosis were 100%. The diagnosis was delayed in 9.93% of Crohn's disease (CD) and 12.5% of lymphoma. Among the definite cases, the diagnosis was corrected during the follow-up in 12.5% of the patients, while the clinical treatment was corrected during the follow-up in 17.86% of the patients. Among the suspected cases, the diagnosis and treatment was corrected in 61.11% of the patients during the follow-up. Conclusion: Coincident diagnosis of ileitis and ileum ulcer is low. Delayed diagnosis of Crohn's disease and lymphoma were observed in a certain proportion of patients with terminal ileum lesions. A follow-up endoscopy was strongly recommended for these suspected patients with terminal ileum lesions.


Assuntos
Doença de Crohn , Ileíte , Doença de Crohn/diagnóstico , Endoscopia , Seguimentos , Humanos , Íleo
20.
Cell Death Dis ; 11(11): 966, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177505

RESUMO

Treatment of acute pancreatitis (AP) and chronic pancreatitis (CP) remains problematic due to a lack of knowledge about disease-specific regulatory targets and mechanisms. The purpose of this study was to screen proteins related to endoplasmic reticulum (ER) stress and apoptosis pathways that may play a role in pancreatitis. Human pancreatic tissues including AP, CP, and healthy volunteers were collected during surgery. Humanized PRSS1 (protease serine 1) transgenic (PRSS1Tg) mice were constructed and treated with caerulein to mimic the development of human AP and CP. Potential regulatory proteins in pancreatitis were identified by proteomic screen using pancreatic tissues of PRSS1Tg AP mice. Adenoviral shRNA-mediated knockdown of identified proteins, followed by functional assays was performed to validate their roles. Functional analyses included transmission electron microscopy for ultrastructural analysis; qRT-PCR, western blotting, co-immunoprecipitation, immunohistochemistry, and immunofluorescence for assessment of gene or protein expression, and TUNEL assays for assessment of acinar cell apoptosis. Humanized PRSS1Tg mice could mimic the development of human pancreatic inflammatory diseases. EMC6 and APAF1 were identified as potential regulatory molecules in AP and CP models by proteomic analysis. Both EMC6 and APAF1 regulated apoptosis and inflammatory injury in pancreatic inflammatory diseases. Moreover, APAF1 was regulated by EMC6, induced apoptosis to injure acinar cells and promoted inflammation. In the progression of pancreatitis, EMC6 was activated and then upregulated APAF1 to induce acinar cell apoptosis and inflammatory injury. These findings suggest that EMC6 may be a new therapeutic target for the treatment of pancreatic inflammatory diseases.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/metabolismo , Proteínas de Membrana/metabolismo , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Doença Aguda , Animais , Apoptose/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Biologia Molecular/métodos , Pancreatite Crônica/genética , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA