RESUMO
JOURNAL/nrgr/04.03/01300535-202504000-00029/figure1/v/2024-07-06T104127Z/r/image-tiff Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients, with evidence suggesting exercise may reduce mortality risks and aid neural regeneration. The role of the small ubiquitin-like modifier (SUMO) protein, especially post-exercise, in cancer progression, is gaining attention, as are the potential anti-cancer effects of SUMOylation. We used machine learning to create the exercise and SUMO-related gene signature (ESLRS). This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers. We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers, specifically highlighting how murine double minute 2 (MDM2), a component of the ESLRS, can be targeted by nutlin-3. This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation. Using comprehensive CRISPR screening, we validated the effects of specific ESLRS genes on low-grade glioma progression. We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation. Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway. Its efficacy decreased with MDM2 overexpression, and this was reversed by Nutlin-3a or exercise. Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation. Notably, both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells. These results suggest the potential for Nutlin-3a, an MDM2 inhibitor, with physical exercise as a therapeutic approach for glioma management. Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise, natural products, and immune regulation in cancer treatment.
RESUMO
BACKGROUND: Although numerous studies have reported successful clinical outcomes of meniscal allograft transplantation (MAT) or meniscal scaffold implantation (MSI), the difference between the outcome of MAT and MSI remains unclear. PURPOSE: To compare the overall outcomes and survival rates of MAT and MSI, aiming to provide comprehensive evidence for determining the optimal treatment strategy for meniscal defects. METHODS: A systematic review was performed via a comprehensive search of PubMed, Embase, and the Cochrane Library. Studies of MAT or MSI were included according to the inclusion and exclusion criteria. The Lysholm score was chosen as the primary outcome measure, while secondary outcomes encompassed patient-reported outcome measures (PROMs), return to sports (RTS) rates, survival rates, and complication rates. The outcomes were stratified into two groups: MAT group and MSI group, followed by statistical comparison ( P <0.05). The quality of the included studies was assessed by the Cochrane Risk of Bias 2 (RoB2) assessment tool for randomized controlled trials (RCTs) and the Coleman Methodology Score (CMS) for non-randomized controlled trials. RESULTS: A total of 3932 patients (2859 MAT, 1073 MSI) in 83 studies (51 MAT, 32 MSI) had the overall significant improvement in all clinical scores. The group MSI had a higher Lysholm score of both preoperative ( P =0.002) and postoperative ( P <0.001) than group MAT; however, the mean improvements were similar between the two groups ( P =0.105). Additionally, MSI had higher improvements of IKDC ( P <0.001), KOOS symptom ( P =0.010), KOOS pain ( P =0.036), and KOOS ADL ( P =0.004) than MAT. Interestingly, MAT had higher preoperative ( P =0.018) and less postoperative VAS pain ( P =0.006), which was more improved in MAT ( P <0.001). Compared with MAT, MSI had a higher 10-year survival rate ( P =0.034), a similar mid-term survival rate MAT ( P =0.964), and a lower complication rate ( P <0.001). CONCLUSION: Both MAT and MSI could have good clinical outcomes after surgery with a similar improvement in Lysholm score. MSI had a higher 10-year survival rate and fewer complications than MAT. LEVEL OF EVIDENCE: Level IV, systematic review.
Assuntos
Meniscos Tibiais , Humanos , Meniscos Tibiais/transplante , Meniscos Tibiais/cirurgia , Resultado do Tratamento , Transplante Homólogo , Alicerces Teciduais , Lesões do Menisco Tibial/cirurgia , Aloenxertos , Medidas de Resultados Relatados pelo PacienteRESUMO
Glioblastoma (GBM), one of the most malignant brain tumors in the world, has limited treatment options and a dismal survival rate. Effective and safe disease-modifying drugs for glioblastoma are urgently needed. Here, we identified a small molecule, Molephantin (EM-5), effectively penetrated the blood-brain barrier (BBB) and demonstrated notable antitumor effects against GBM with good safety profiles both in vitro and in vivo. Mechanistically, EM-5 not only inhibits the proliferation and invasion of GBM cells but also induces cell apoptosis through the reactive oxygen species (ROS)-mediated PI3K/Akt/mTOR pathway. Furthermore, EM-5 causes mitochondrial dysfunction and blocks mitophagy flux by impeding the fusion of mitophagosomes with lysosomes. It is noteworthy that EM-5 does not interfere with the initiation of autophagosome formation or lysosomal function. Additionally, the mitophagy flux blockage caused by EM-5 was driven by the accumulation of intracellular ROS. In vivo, EM-5 exhibited significant efficacy in suppressing tumor growth in a xenograft model. Collectively, our findings not only identified EM-5 as a promising, effective, and safe lead compound for treating GBM but also uncovered its underlying mechanisms from the perspective of apoptosis and mitophagy.
Assuntos
Apoptose , Neoplasias Encefálicas , Proliferação de Células , Glioblastoma , Mitofagia , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Mitofagia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Nus , Serina-Treonina Quinases TOR/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Background: Colorectal cancer (CRC) is the third most prevalent tumor globally. The liver is the most common site for CRC metastasis, and the involvement of the liver is a common cause of death in patients with late-stage CRC. Consequently, mitigating CRC liver metastasis (CRLM) is key to improving CRC prognosis and increasing survival. Exercise has been shown to be an effective method of improving the prognosis of many tumor types. However, the ability of exercise to inhibit CRLM is yet to be thoroughly investigated. Methods: The GSE157600 and GSE97084 datasets were used for analysis. A pan-cancer dataset which was uniformly normalized was downloaded and analyzed from the UCSC database: TCGA, TARGET, GTEx (PANCAN, n = 19,131, G = 60,499). Several advanced bioinformatics analyses were conducted, including single-cell sequencing analysis, correlation algorithm, and prognostic screen. CRC tumor microarray (TMA) as well as cell/animal experiments are used to further validate the results of the analysis. Results: The greatest variability was found in epithelial cells from the tumor group. RPS4X was generally upregulated in all types of CRC, while exercise downregulated RPS4X expression. A lowered expression of RPS4X may prolong tumor survival and reduce CRC metastasis. RPS4X and tumor stemness marker-CD44 were highly positively correlated and knockdown of RPS4X expression reduced tumor stemness both in vitro and in vivo. Conclusion: RPS4X upregulation may enhance CRC stemness and increase the odds of metastasis. Exercise may reduce CRC metastasis through the regulation of RPS4X.
RESUMO
We report a case of fetal nasal chondromesenchymal hamartoma (NCMH) first noted on prenatal ultrasound at 34 weeks. A solid-cystic mass which predominantly hyperechoicgenic and relatively clear margin, was located on the left nasal cavity and pharynx, with anterior extension and moderate blood flow. Further follow-up ultrasound examination depicted an enlargement of the tumor. Fetal magnetic resonance imaging (MRI) showed an inhomogeneous signal lesion involving the ethmoid sinuses, nasal cavity, and pharynx. The infant, delivered via cesarean section at 37 + 5 weeks, required urgent neonatology intervention due to respiratory difficulties. Neonatal MRI and computer tomography were subsequently performed at 1 day after birth. Surgical excision occurred at 7 days, confirming NCMH via histological examination. Awareness of this entity, is essential to avoid potentially harmful therapies, especially in prenatal period. Considered NCMH in diagnosis when fetal nasal masses presenting with predominantly high-level echo, well-defined margins and moderate vascularity.
Assuntos
Cesárea , Hamartoma , Gravidez , Lactente , Recém-Nascido , Humanos , Feminino , Diagnóstico Diferencial , Hamartoma/diagnóstico por imagem , Hamartoma/patologia , Feto/patologia , Diagnóstico Pré-Natal , Imageamento por Ressonância MagnéticaRESUMO
Due to its intricate heterogeneity, high invasiveness, and poor prognosis, triple-negative breast cancer (TNBC) stands out as the most formidable subtype of breast cancer. At present, chemotherapy remains the prevailing treatment modality for TNBC, primarily due to its lack of estrogen receptors (ERs), progesterone receptors (PRs), and human epidermal growth receptor 2 (HER2). However, clinical chemotherapy for TNBC is marked by its limited efficacy and a pronounced incidence of adverse effects. Consequently, there is a pressing need for novel drugs to treat TNBC. Given the rich repository of diverse natural compounds in traditional Chinese medicine, identifying potential anti-TNBC agents is a viable strategy. This study investigated lasiokaurin (LAS), a natural diterpenoid abundantly present in Isodon plants, revealing its significant anti-TNBC activity both in vitro and in vivo. Notably, LAS treatment induced cell cycle arrest, apoptosis, and DNA damage in TNBC cells, while concurrently inhibiting cell metastasis. In addition, LAS effectively inhibited the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and signal transducer and activator of transcription 3 (STAT3), thus establishing its potential for multitarget therapy against TNBC. Furthermore, LAS demonstrated its ability to reduce tumor growth in a xenograft mouse model without exerting detrimental effects on the body weight or vital organs, confirming its safe applicability for TNBC treatment. Overall, this study shows that LAS is a potent candidate for treating TNBC.
Assuntos
Diterpenos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases , Proliferação de Células , Linhagem Celular Tumoral , Diterpenos/farmacologia , Apoptose , MamíferosRESUMO
PURPOSE: This study aimed to evaluate the morphology of the anterior cruciate ligament (ACL) femoral footprint with three-dimensional magnetic resonance imaging (3D MRI) in healthy knees. METHODS: Fifty subjects with healthy knees were recruited, utilising 3D-SPACE sequences for ACL evaluation. The ACL was manually segmented, and the shape, size and location of the ACL femoral footprint were evaluated on a reformatted oblique-sagittal plane, which aligned closely with the ACL attachment. Statistical analysis included one-way ANOVA for continuous variables and Fisher's exact test for categorical variables, with a P value < 0.05 considered significant. RESULTS: Three types of ACL femoral footprint shape were identified, namely, oblong-ovate (OO) in 33 knees (66%), triangular (Tr) in 12 knees (24%) and two-tears (TT) in 5 knees (10%), with the mean areas being 58, 47 and 68 mm2, respectively. Within group TT, regions with similar sizes but different locations were identified: high tear (TT-H) and low tear (TT-L). Notably, group OO demonstrated a larger notch height index, whilst group TT was characterised by a larger α angle and lateral femoral condyle index. A noticeable variation was observed in the location of the femoral footprint centre across groups, with group TT-L and group Tr showing a more distal position relative to the apex of the deep cartilage. According to the Bernard and Hertel (BH) grid, the ACL femoral footprint centres in group TT-L exhibited a shallower and higher position than other groups. Furthermore, compared to group OO and TT-H, group Tr showed a significantly higher position according to the BH grid. CONCLUSION: In this study, the morphology of the ACL femoral footprint in healthy young adults was accurately evaluated using 3D MRI, revealing three distinct shapes: OO, Tr and TT. The different ACL femoral footprint types showed similar areas but markedly different locations. These findings emphasise the necessity of considering both the shape and precise location of the ACL femoral footprint during clinical assessments, which might help surgeons enhance patient-specific surgical plans before ACL reconstruction. LEVEL OF EVIDENCE: IV.
Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Adulto Jovem , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho/cirurgia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Tíbia/cirurgiaRESUMO
Objective: Exercise can produce a large number of cytokines that may benefit cancer patients, including Interleukin 15 (IL-15). IL-15 is a cytokine that has multiple functions in regulating the adaptive and innate immune systems and tumorigenesis of lung and breast cancers. However, the roles of IL-15 in other types of cancer remain unknown. In this article, we try to systematically analyze if IL-15 is a potential molecular biomarker for predicting patient prognosis in pan-cancer and its connection with anti-cancer effects of exercise. Methods: The expression of IL-15 was detected by The Cancer Genome Atlas (TCGA) database, Human protein Atlas (HPA), and Genotype Tissue-Expression (GTEX) database. Analysis of IL-15 genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and HPA. The correlations between IL-15 expression and survival outcomes, clinical features, immune-associated cell infiltration, and ferroptosis/cuproptosis were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was performed to evaluate the biological functions of IL-15 in pan-cancer. Results: The differential analysis suggested that the level of IL-15 mRNA expression was significantly downregulated in 12 tumor types compared with normal tissues, which is similar to the protein expression in most cancer types. The high expression of IL-15 could predict the positive survival outcome of patients with LUAD (lung adenocarcinoma), COAD (colon adenocarcinoma), COADREAD (colon and rectum adenocarcinoma), ESCA (esophageal carcinoma), SKCM (skin cutaneous melanoma), UCS (uterine carcinosarcoma), and READ (rectum adenocarcinoma). Moreover, amplification was found to be the most frequent mutation type of IL-15 genomic. Furthermore, the expression of IL-15 was correlated to the infiltration levels of various immune-associated cells in pan-cancer assessed by the ESTIMATE algorithm and TIMER database. In addition, IL-15 is positively correlated with ferroptosis/cuproptosis-related genes (ACSL4 and LIPT1) in pan-cancer. Levels of IL-15 were reported to be elevated in humans for 10-120 min following an acute exercise. Therefore, we hypothesized that the better prognosis of pan-cancer patients with regular exercise may be achieved by regulating level of IL-15. Conclusion: Our results demonstrated that IL-15 is a potential molecular biomarker for predicting patient prognosis, immunoreaction, and ferroptosis/cuproptosis in pan-cancer and partly explained the anti-cancer effects of exercise.
RESUMO
Mulberry (Morus alba L.) leaves have long been considered beneficial in traditional Chinese medicine to treat infectious and internal diseases. Recently studies have discovered that the mulberry leaf's total flavonoids (MLF) display excellent hypoglycemia properties. However, the active ingredients and their molecular mechanisms are still uncharacterized. In this study, we explored the hypoglycemic effects of MLF and mulberry leaf polysaccharides (MLP) on ob/ob mice, an animal model of type 2 diabetes mellitus (T2DM), compared with Ramulus Mori (Sangzhi) alkaloid (RMA). Network pharmacology was employed to identify the potential available targets and active compounds of MLF and RMA against hyperglycemia. Molecular docking, an insulin-resistant cell model and qPCR were employed to verify the antidiabetic activity of the critical compounds and the gene expression profiles of the top molecular targets. Here, the results showed that MLF and MLP improved glucose uptake in insulin-resistant hepatocytes. MLF, MLP and RMA alleviated insulin resistance and glucose intolerance in ob/ob mice. Unlike MLF and MLP, RMA administration did not influence the accumulation of intrahepatic lipids. Network pharmacology analysis revealed that morusin, kuwanon C and morusyunnansin L are the main active compounds of MLF and that they amend insulin resistance and glycemia via the PI3K- Akt signaling pathway, lipid and atherosclerosis pathways, and the AGE-RAGE signaling pathway. Moreover, 1-deoxynojirimycin (DNJ), fagomine (FA), and N-methyl-1-deoxynojirimycin are the primary active ingredients of RMA and target carbohydrate metabolism and regulate alpha-glucosidase activity to produce a potent anti-diabetic effect. The molecular docking results indicated that morusin, kuwanon C and morusyunnansin L are the critical bioactive compounds of MLF. They had high affinities with the key targets adenosine A1 receptor (ADORA1), AKT serine/threonine kinase 1 (AKT1), peroxisome proliferator-activated receptor gamma (PPARγ), and glycogen synthase kinase 3 beta (GSK3ß), which play crucial roles in the MLF-mediated glucose-lowering effect. Additionally, morusin plays a role in amending insulin resistance of hepatocytes by repressing the expression of the ADORA1 and PPARG genes. Our results shed light on the mechanism behind the glucose-lowering effects of MLF, suggesting that morusin, kuwanon C, and morusyunnansin L might be promising drug leads for the management of T2DM.
RESUMO
BACKGROUND: Adhesive capsulitis is a common shoulder disorder inducing joint capsule fibrosis and pain. When combined with rotator cuff tear (RCT), treatments can be more complex. Currently, targeted therapy is lacking. Since adhesive capsulitis is reported to be related to circulating materials, we analyzed the contents and biology of circulating exosomes from RCT patients with and without adhesive capsulitis, in an attempt to developing a targeting treatment. METHODS: Samples from a consecutive cohort of patients with RCT for surgery were collected. Circulating exosomal miRNAs sequencing were used to detect differentially expressed miRNAs in patients with and without adhesive capsulitis. For experiments in vitro, Brdu staining, CCK-8 assay, wound healing test, collagen contraction test, real-time quantitative polymerase chain reaction, and western blot were conducted. Histological and immunofluorescent staining, and biomechanical analysis were applied in a mouse model of shoulder stiffness. The characteristics of liposomes loaded with siRNA were measured via dynamic light scattering or electron microscopy. RESULTS: Circulating exosomal miRNAs sequencing showed that, compared to exosomes from patients without adhesive capsulitis, miR-142 was significantly up-regulated in exosomes from adhesive capsulitis (Exo-S). Both Exo-S and miR-142 could inhibit fibrogenesis, and the anti-fibrotic effect of Exo-S relied on miR-142. The target of miR-142 was proven to be transforming growth factor ß receptor 1 (Tgfbr1). Then, liposomes were developed and loaded with si-Tgfbr1. The si-Tgfbr1-loading liposomes exhibited promising therapeutic effect against shoulder stiffness in mouse model with no evidence toxicity. CONCLUSION: This study showed that, in RCT patients with adhesive capsulitis, circulating exosomes are protective and have anti-fibrotic potential. This effect is related to the contained miR-142, which targets Tgfbr1. By mimicking this biological function, liposomes loaded with si-Tgfbr1 can mitigate shoulder stiffness pre-clinically.
RESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is an aggressive carcinoma with genome instability. Long non-coding RNAs (LncRNAs) have been functionally associated with genomic instability in cancers. However, the identification and prognostic value of lncRNAs related to genome instability have not been explored in hepatocellular carcinoma. In this study, we aim to identify a genomic instability-related lncRNA signature for predicting prognosis and the efficacy of immunotherapy in HCC patients. METHODS: According to the somatic mutation and transcript data of 364 patients with HCC, we determined differentially expressed genome instability-related lncRNAs (GInLncRNAs). Gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of genes and genomes enrichment analyses revealed the potential functions of genes co-expressed with those lncRNAs involved in cancer development and immune function. We further determined a genome instability-related lncRNA signature (GInLncSig) through Cox regression analysis and LASSO regression analysis. Thereafter, we performed correlation analyses with mutations, clinical stratification analyses, and survival analyses to evaluate GInLncSig predictive function. Subsequently, we construct a nomogram model for prognostic assessments of patients with HCC. Finally, we performed Immunocytes infiltration analysis, gene set enrichment analysis (ssGSEA) of immunity circle-associated pathways, and T cell-inflamed score to explore GInLncSig's potential value in guiding immunotherapy. RESULTS: We identified 11 independent prognosis-associated GInLncRNAs (AC002511.2, LINC00501, LINC02055, LINC02714, LINC01508, LOC105371967, RP11_96A15.1, RP11_305F18.1, RP11_342M1.3, RP11_432J24.3, U95743.1) to construct a GInLncSig. According to the risk score calculated by GInLncSig, the high-risk group was characterized by a higher somatic mutation count, significantly poorer clinical prognosis, higher T cell-inflamed score, and specific tumor immune infiltration status compared to the low-risk group. Furthermore, we constructed a nomogram model to improve the reliability and clinical utility of predicting the prognosis of patients with HCC. CONCLUSION: Our study established a reliable prognostic prediction signature that could be a tool for prognosis prediction and a promising predictive biomarker of immunotherapy in hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Mutação , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Reprodutibilidade dos Testes , Microambiente Tumoral/genéticaRESUMO
Severe inflammation and myogenic differentiation disorder are the major obstacles to skeletal muscle healing after injury. MicroRNAs (miRNAs) play an important role as regulatory molecules during the process of muscle healing, but the detailed mechanism of miRNA-mediated intercellular communication between myoblasts and macrophages remains unclear. Here, it is reported that myoblasts secrete miRNAs-enriched exosomes in the inflammatory environment, through which miR-224 is transferred into macrophages to inhibit M2 polarization. Further data demonstrate that WNT-9a may be a direct target of miR-224 for macrophage polarization. In turn, the secretome of M1 macrophages impairs myogenic differentiation and promotes proliferation. Single-cell integration analysis suggests that the elevation of exosome-derived miR-224 is caused by the activation of the key factor E2F1 in myoblasts and demonstrates the RB/E2F1/miR-224/WNT-9a axis. In vivo results show that treatment with antagomir-224 or liposomes containing miR-224 inhibitors suppresses fibrosis and improves muscle recovery. These findings indicate the importance of the crosstalk between myoblasts and macrophages via miRNA-containing exosomes in the regulation of macrophage polarization and myogenic differentiation/proliferation during muscle healing. This study provides a strategy for treating muscle injury through designing an M2 polarization-enabling anti-inflammatory and miRNA-based bioactive material.
Assuntos
Exossomos , MicroRNAs , Anti-Inflamatórios , Materiais Biocompatíveis , Lipossomos , Macrófagos , MicroRNAs/genética , MúsculosRESUMO
Background: Decreasing the proinflammatory M1 macrophages or shifting the polarization status from M1 to M2 phenotype is thought to be beneficial for tendon-to-bone healing. In anterior cruciate ligament reconstruction (ACLR), using an insertion-preserved hamstring tendon (IP-HT) graft compared with a free hamstring tendon (FHT) graft has been shown to reduce graft necrosis and improve healing. However, the role of macrophage polarization at the tendon-to-bone interface is unclear. Hypothesis: ACLR using IP-HT graft would facilitate the phenotype shift from M1 to M2 macrophages at the tendon-to-bone interface. Study Design: Controlled laboratory study. Methods: Unilateral ACLR was performed on 42 healthy New Zealand White rabbits (study group, 21 rabbits with IP-HT graft; control group, 21 rabbits with FHT graft). At days 1, 3, and 7 and weeks 3, 6, 12, and 24 postoperatively, 3 rabbits in each group were sacrificed to investigate and compare the expression of surrogate markers for M1 macrophages (inducible nitric oxide synthase [iNOS] and tumor necrosis factor α [TNF-α]) and M2 macrophages (CD206 and transforming growth factor ß [TGF-ß]) via immunohistochemical staining and evaluation. Results: In the control group, the percentage of iNOS- and TNF-α-positive cells from postoperative day 7 and week 3 increased then decreased by week 6; positive expression of CD206 and TGF-ß was weaker and peaked at 3 weeks postoperatively. In the study group, high CD206- and TGF-ß-positive expression was observed from weeks 3 to 12 and peaked at week 6, and positive expression of iNOS- and TNF-α was weaker and peaked on day 7. At both 7 days and 3 weeks, the percentages of iNOS- and TNF-α-positive cells in the control group were both significantly higher than in the study group (P ≤ .04 for all). At 6 weeks, the percentages of CD206- and TGF-ß-positive cells in the study group were both significantly higher than in the control group (P = .02 and P = .04, respectively). Conclusion: More expression of surrogate markers for M2 macrophages was observed in the tendon-to-bone healing process after ACLR using IP-HT versus FTP graft. Clinical Relevance: Using IP-HT grafts in ACLR may facilitate postoperative healing by shifting the local status of macrophage polarization at the tendon-to-bone interface.
RESUMO
Shoulder stiffness (SS) is a common shoulder disease characterized by increasing pain and limited range of motion. SS is considered to be an inflammatory and fibrotic disorder pathologically. However, there is no consensus on the most effective conservative treatment for fibrosis. Given that human Bone Marrow Mesenchymal Stem Cell-derived extracellular vesicles (BMSC-EVs) displayed promising therapeutic effects for various tissues, we investigated the therapeutic effect of BMSC-EVs on fibrosis in a mice immobilization model and two cell models. By conducting a series of experiments, we found that BMSC-EVs can significantly inhibit the fibrogenic process both in vitro and in vivo. In detail, BMSC-EVs suppressed the aberrant proliferation, high collagen production capacity, and activation of fibrotic pathways in TGF-ß-stimulated fibroblasts in vitro. Besides, in vivo, BMSC-EVs reduced cell infiltration, reduced fibrotic tissue in the shoulder capsule, and improved shoulder mobility. In addition, via exosomal small RNA sequencing and qPCR analysis, let-7a-5p was verified to be the highest expressed miRNA with predicted antifibrotic capability in BMSC-EVs. The antifibrotic capacity of BMSC-EVs was significantly impaired after the knockdown of let-7a-5p. Moreover, we discovered that the mRNA of TGFBR1 (the membrane receptor of transforming growth factor ß) was the target of let-7a-5p. Together, these findings elucidated the antifibrotic role of BMSC-EVs in shoulder capsular fibrosis. This study clarifies a new approach using stem cell-derived EVs therapy as an alternative to cell therapy, which may clinically benefit patients with SS in the future.
RESUMO
Tumor-associated macrophages (TAMs) play crucial roles in cancer progression, but the contributions and regulation of different macrophage subpopulations remain unclear. Here, we report a high level of TAM infiltration in human and mouse pancreatic ductal adenocarcinoma (PDAC) models and that the targeting of proliferating F4/80+ macrophages facilitated cytotoxic CD8+ T-cell-dependent antitumor immune responses. A well-defined KPC-derived PDAC cell line and the murine Panc02 PDAC cell line were used. Treatment of PDAC-bearing mice with clodronate liposomes, an agent that chemically depletes macrophages, did not impact macrophage subpopulations in the local tumor microenvironment (TME). However, further investigation using both BrdU and Ki67 to evaluate proliferating cells showed that clodronate liposomes treatment reduced proliferating macrophages in the KPC and Panc02 models. We further evaluated the distance between CD8+ T cells and PanCK+ tumor cells, and clodronate liposomes treatment significantly increased the number of CD8+ T cells in close proximity (<30 µm) to PanCK+ PDAC cells, with increased numbers of tumor-infiltrating IFN-γ+CD8+ T cells. This study suggests that targeting proliferating tumor-infiltrating macrophages may increase CD8+ cytotoxic lymphocyte (CTL) infiltration and facilitate the spatial redistribution of CD8+ T cells in tumors, contributing to the antitumor effect.
RESUMO
OBJECTIVES: To describe the ultrasonographic appearance of congenital anaplastic astrocytoma, so as to provide diagnostic clues for it. An updated review of the literature was also carried out. RESULTS: There was a case of fetal anaplastic astrocytoma detected by ultrasound at 37 + 1 weeks of gestation. It showed that a hypoechoic mass was located in the left hemisphere with a relatively clear margin and subtle color flows. Prenatal magnetic resonance imaging (MRI) which was taken subsequently confirmed the result of ultrasound. Intratumoral hemorrhage was observed in later follow-up and further confirmed by histological examination. The fetus was delivered vaginally at 39 + 6 weeks. The infant died 2 h after delivery due to respiration failure. The histological examination confirmed an anaplastic astrocytoma. CONCLUSIONS: Congenital anaplastic astrocytoma commonly detected by ultrasound has a relatively better perinatal prognosis, especially compared with glioblastoma. Prenatal ultrasonography diagnosis accurately is of critical importance. The anaplastic astrocytoma should be considered in cases in which fetal images reveal a heterogeneous echogenic mass in the brain, especially in the presence of intratumoral hemorrhage, subtle color flow, and relatively clear margin.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Feminino , Humanos , Gravidez , Glioblastoma/patologia , Neoplasias Encefálicas/congênito , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia , Diagnóstico Pré-Natal/métodos , Feto/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Imageamento por Ressonância Magnética/métodos , HemorragiaRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and its prognosis remains dismal. Hence, it is important to identify the diagnostic and prognostic biomarkers for HCC. Urokinase plasminogen activator (uPA), an extracellular matrix (ECM)-degrading protease, plays a pivotal role in the invasion and metastasis of HCC. METHODS: To confirm the clinical significance of uPA in HCC, we explored uPA expression in HCC in The Cancer Genome Atlas (TCGA) database. The expression level of uPA was further verified by quantitative reverse transcription polymerized chain reaction (qRT-PCR) in 133 pairs of primary HCC samples. A survival analysis was conducted with the Kaplan-Meier method in the HCC samples and TCGA database. RESULTS: Our results showed that uPA was overexpressed in HCC and was significantly associated with HCC tumor size (P=0.015), differentiation grade (P=0.028), and absence of tumor encapsulation (P=0.010). Patients with high uPA expression levels had a poor outcome (P=0.026). TCGA database analysis was also consistent with our experimental results. CONCLUSIONS: In conclusion, our findings revealed that uPA was overexpressed in HCC and was related to HCC malignant features including tumor size, differentiation grade and absence of tumor encapsulation. High uPA expression had a shorter survival time. It is a potential prognostic biomarker of HCC.
RESUMO
PURPOSE: By using integrative RNA sequencing analysis, we identified a novel tumor suppressor, serpin family A member 11 (SERPINA11), which is a serine proteinase inhibitor that belongs to the serpin superfamily. However, the function of SERPINA11 in hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to investigate the role and molecular mechanism of SERPINA11 in HCC. METHODS: Gene expression patterns of SERPINA11 were analyzed in tissue samples of HCC patients by qRT-PCR. In vitro and in vivo experiments were performed to characterize the function and molecular mechanism of SERPINA11 in the tumor metastasis capacity. RESULTS: SERPINA11 was downregulated in approximately 50% of HCC and significantly associated with metastasis and poor outcome of patients. Functional study demonstrated that SERPINA11 could inhibit cell growth, cell migration and tumor metastasis. Mechanistic investigations suggested that SERPINA11 accelerated urokinase-type plasminogen activator (uPA) degradation to suppress extracellular signal-regulated kinase (ERK1/2) phosphorylation, and thereby subdued metastatic capabilities of HCC cells. CONCLUSION: SERPINA11 plays an important tumor suppressive role in HCC, with possible use as a biomarker and an intervention point for new therapeutic strategies.
RESUMO
BACKGROUND: It remains controversial whether abnormal femoral version (FV) affects the outcomes of hip arthroscopic surgery for femoroacetabular impingement (FAI) or labral tears. PURPOSE: To review the outcomes of hip arthroscopic surgery for FAI or labral tears in patients with normal versus abnormal FV. STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: Embase, PubMed, and the Cochrane Library were searched in July 2020 for studies reporting the outcomes after primary hip arthroscopic surgery for FAI or labral tears in patients with femoral retroversion (<5°), femoral anteversion (>20°), or normal FV (5°-20°). The primary outcome was the modified Harris Hip Score (mHHS), and secondary outcomes were the visual analog scale (VAS) for pain, Hip Outcome Score-Sport-Specific Subscale (HOS-SSS), Non-Arthritic Hip Score (NAHS), failure rate, and patient satisfaction. The difference in preoperative and postoperative scores (Δ) was also calculated when applicable. RESULTS: Included in this review were 5 studies with 822 patients who underwent hip arthroscopic surgery for FAI or labral tears; there were 166 patients with retroversion, 512 patients with normal version, and 144 patients with anteversion. Patients with retroversion and normal version had similar postoperative mHHS scores (mean difference [MD], 2.42 [95% confidence interval (CI), -3.42 to 8.26]; P = .42) and ΔmHHS scores (MD, -0.70 [96% CI, -8.56 to 7.15]; P = .86). Likewise, the patients with anteversion and normal version had similar postoperative mHHS scores (MD, -3.09 [95% CI, -7.66 to 1.48]; P = .18) and ΔmHHS scores (MD, -1.92 [95% CI, -6.18 to 2.34]; P = .38). Regarding secondary outcomes, patients with retroversion and anteversion had similar ΔNAHS scores, ΔHOS-SSS scores, ΔVAS scores, patient satisfaction, and failure rates to those with normal version, although a significant difference was found between the patients with retroversion and normal version regarding postoperative NAHS scores (MD, 5.96 [95% CI, 1.66-10.26]; P = .007) and postoperative HOS-SSS scores (MD, 7.32 [95% CI, 0.19-14.44]; P = .04). CONCLUSION: The results of this review indicated that abnormal FV did not significantly influence outcomes after hip arthroscopic surgery for FAI or labral tears.