Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848444

RESUMO

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Assuntos
Antígeno CD47 , Macrófagos , Metástase Neoplásica , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Evasão Tumoral , Humanos , Masculino , Proteínas de Transporte , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Células Tumorais Cultivadas
2.
Cell Rep ; 42(9): 113067, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37659081

RESUMO

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Células Endoteliais , Transdução de Sinais , Diferenciação Celular , Microambiente Tumoral , Linhagem Celular Tumoral
3.
BMC Pregnancy Childbirth ; 22(1): 927, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494789

RESUMO

BACKGROUND: Placenta mesenchymal dysplasia (PMD) is a rare placental anomaly associated with various fetal and maternal complications. Whether close ultrasound surveillance can prevent intrauterine fetal demise (IUFD) in patients with PMD is still under investigation. Amniotic fluid embolism (AFE) is a rare, lethal, and unpredictable maternal complication that has never been described in association with PMD. Here, we report a case of PMD, in which the fetus eventually demised in utero despite weekly color Doppler monitoring, and the mother subsequently encountered AFE during delivery. CASE PRESENTATION: A 43-year-old woman who had received three frozen embryo transfer, was found to have a singleton pregnancy with an enlarged multi-cystic placenta at 8 weeks' gestation. Fetal growth restriction (FGR) was noted since the 21stweek. The fetus eventually demised in-utero at 25 weeks despite weekly color Doppler surveillance. Cesarean section was performed under general anesthesia due to placenta previa totalis and antepartum hemorrhage. During surgery, the patient experienced a sudden blood pressure drop and desaturation followed by profound coagulopathy. AFE was suspected. After administration of inotropic agents and massive blood transfusion, the patient eventually survived AFE. PMD was confirmed after pathological examination of the placenta. CONCLUSIONS: While FGR can be monitored by color Doppler, our case echoed previous reports that IUFD may be unpreventable even under intensive surveillance in PMD cases. Although AFE is usually considered unpredictable, PMD can result in cumulative risk factors contributing to AFE. Whether a specific link exists between the pathophysiology of PMD and AFE requires further investigation.


Assuntos
Embolia Amniótica , Placenta Prévia , Humanos , Feminino , Gravidez , Adulto , Embolia Amniótica/diagnóstico por imagem , Embolia Amniótica/etiologia , Placenta/patologia , Cesárea/efeitos adversos , Morte Fetal/etiologia , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/patologia
4.
Cell Rep ; 38(2): 110220, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021081

RESUMO

The epigenome delineates lineage-specific transcriptional programs and restricts cell plasticity to prevent non-physiological cell fate transitions. Although cell diversification fosters tumor evolution and therapy resistance, upstream mechanisms that regulate the stability and plasticity of the cancer epigenome remain elusive. Here we show that 2-hydroxyglutarate (2HG) not only suppresses DNA repair but also mediates the high-plasticity chromatin landscape. A combination of single-cell epigenomics and multi-omics approaches demonstrates that 2HG disarranges otherwise well-preserved stable nucleosome positioning and promotes cell-to-cell variability. 2HG induces loss of motif accessibility to the luminal-defining transcriptional factors FOXA1, FOXP1, and GATA3 and a shift from luminal to basal-like gene expression. Breast tumors with high 2HG exhibit enhanced heterogeneity with undifferentiated epigenomic signatures linked to adverse prognosis. Further, ascorbate-2-phosphate (A2P) eradicates heterogeneity and impairs growth of high 2HG-producing breast cancer cells. These findings suggest 2HG as a key determinant of cancer plasticity and provide a rational strategy to counteract tumor cell evolution.


Assuntos
Cromatina/metabolismo , Glutaratos/metabolismo , Oxirredutases do Álcool/metabolismo , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Reparo do DNA/fisiologia , Epigenoma/genética , Fatores de Transcrição Forkhead/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Isocitrato Desidrogenase/genética , Neoplasias/genética , Neoplasias/metabolismo , Nucleossomos/metabolismo , Proteínas Repressoras/genética
5.
Mol Cell Endocrinol ; 539: 111481, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624439

RESUMO

Endometriosis is a debilitating gynecologic disorder that affects ∼10% of women of reproductive age. Endometriosis is characterized by growth of endometriosis lesions within the abdominal cavity, generally thought to arise from retrograde menstruation of shed endometrial tissue. While the pathophysiology underlying peritoneal endometriosis lesion formation is still unclear, the interaction between invading endometrial tissue and the peritoneal mesothelial lining is an essential step in lesion formation. In this study, we assessed proteomic differences between eutopic endometrial stromal cells (ESCs) from women with and without endometriosis in response to peritoneal mesothelial cell (PMC) exposure, using single-cell cytometry by time-of-flight (CyTOF). Co-cultured primary eutopic ESCs from women with and without endometriosis with an established PMC line were subjected to immunostaining with a panel of Maxpar CyTOF metal-conjugated antibodies (n = 28) targeting cell junction and mesenchymal markers, which are involved in cell-cell adhesions and epithelial-mesenchymal transition. Exposure of the ESCs to PMCs resulted in a drastic shift in cellular expression profiles in ESCs derived from endometriosis, whereas little effect by PMCs was observed in ESCs from non-endometriosis subjects. The transcription factor SNAI1 was consistently repressed by PMC interactions. ESCs from endometriosis patients are unique in that they respond to PMCs by undergoing changes in adhesive properties and mesenchymal characteristics that would facilitate lesion formation.


Assuntos
Biomarcadores/metabolismo , Endometriose/metabolismo , Endométrio/citologia , Epitélio/metabolismo , Junções Intercelulares/metabolismo , Proteômica/métodos , Células Cultivadas , Técnicas de Cocultura , Biologia Computacional , Endométrio/metabolismo , Endométrio/patologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Análise de Célula Única , Células Estromais/citologia , Células Estromais/metabolismo
6.
Cell Rep ; 33(2): 108253, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053339

RESUMO

While plasminogen activator inhibitor-1 (PAI-1) is known to potentiate cellular migration via proteolytic regulation, this adipokine is implicated as an oncogenic ligand in the tumor microenvironment. To understand the underlying paracrine mechanism, here, we conduct transcriptomic analysis of 1,898 endometrial epithelial cells (EECs) exposed and unexposed to PAI-1-secreting adipose stromal cells. The PAI-1-dependent action deregulates crosstalk among tumor-promoting and tumor-repressing pathways, including transforming growth factor ß (TGF-ß). When PAI-1 is tethered to lipoprotein receptor-related protein 1 (LRP1), the internalized signaling causes downregulation of SMAD4 at the transcriptional and post-translational levels that attenuates TGF-ß-related transcription programs. Repression of genes encoding the junction and adhesion complex preferentially occurs in SMAD4-underexpressed EECs of persons with obesity. The findings highlight a role of PAI-1 signaling that renders ineffective intercellular communication for the development of adiposity-associated endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Moléculas de Adesão Juncional/metabolismo , Obesidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Smad4/metabolismo , Tecido Adiposo/patologia , Regulação para Baixo/genética , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/complicações , Ligação Proteica , Proteólise , Proteômica , Proteína Smad4/genética , Células Estromais/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Ubiquitina/metabolismo
7.
Lab Invest ; 100(4): 606-618, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31857701

RESUMO

High-risk neuroblastoma is associated with low long-term survival rates due to recurrence or metastasis. Retinoids, including 13-cis-retinoic acid (13cRA), are commonly used for the treatment of high-risk neuroblastoma after myeloablative therapy; however, there are significant side effects and resistance rates. In this study, we demonstrated that 13cRA has a better antiproliferative effect in MYCN-amplified neuroblastoma cells than in MYCN-nonamplified neuroblastoma cells. In MYCN-amplified SK-N-DZ cells, 13cRA induced significant upregulation of toll-like receptor 3 (TLR3) and mitochondrial antiviral-signaling protein (MAVS) expression in a time-dependent manner. Furthermore, poly (I:C), a synthetic agonist of TLR3, effectively synergized with 13cRA to enhance antiproliferative effects through upregulation of the innate immune signaling and the mitochondrial stress response, leading to augmentation of the apoptotic response in 13cRA-responsive cancer cells. In addition, the 13cRA/poly (I:C) combination induced neural differentiation through activation of retinoic acid receptors beta (RAR-ß), restoring expression of α-thalassemia/mental retardation syndrome X-linked (ATRX) protein, and inhibiting vessel formation, leading to retarded tumor growth in a mouse xenograft model. These results suggest that the combination of poly (I:C) and RA may provide synergistic therapeutic benefits for treatment of patients with high-risk neuroblastoma.


Assuntos
Apoptose/efeitos dos fármacos , Isotretinoína/farmacologia , Neuroblastoma/metabolismo , Poli I-C/farmacologia , Receptor 3 Toll-Like/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Fatores Imunológicos/farmacologia , Masculino , Camundongos , Camundongos SCID , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res ; 79(1): 196-208, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389702

RESUMO

Emerging evidence indicates that adipose stromal cells (ASC) are recruited to enhance cancer development. In this study, we examined the role these adipocyte progenitors play relating to intercellular communication in obesity-associated endometrial cancer. This is particularly relevant given that gap junctions have been implicated in tumor suppression. Examining the effects of ASCs on the transcriptome of endometrial epithelial cells (EEC) in an in vitro coculture system revealed transcriptional repression of GJA1 (encoding the gap junction protein Cx43) and other genes related to intercellular communication. This repression was recapitulated in an obesity mouse model of endometrial cancer. Furthermore, inhibition of plasminogen activator inhibitor 1 (PAI-1), which was the most abundant ASC adipokine, led to reversal of cellular distribution associated with the GJA1 repression profile, suggesting that PAI-1 may mediate actions of ASC on transcriptional regulation in EEC. In an endometrial cancer cohort (n = 141), DNA hypermethylation of GJA1 and related loci TJP2 and PRKCA was observed in primary endometrial endometrioid tumors and was associated with obesity. Pharmacologic reversal of DNA methylation enhanced gap-junction intercellular communication and cell-cell interactions in vitro. Restoring Cx43 expression in endometrial cancer cells reduced cellular migration; conversely, depletion of Cx43 increased cell migration in immortalized normal EEC. Our data suggest that persistent repression by ASC adipokines leads to promoter hypermethylation of GJA1 and related genes in the endometrium, triggering long-term silencing of these loci in endometrial tumors of obese patients. SIGNIFICANCE: Studies reveal that adipose-derived stem cells in endometrial cancer pathogenesis influence epigenetic repression of gap junction loci, which suggests targeting of gap junction activity as a preventive strategy for obesity-associated endometrial cancer.


Assuntos
Adipocinas/farmacologia , Tecido Adiposo/patologia , Comunicação Celular , Conexina 43/genética , Neoplasias do Endométrio/patologia , Repressão Epigenética , Obesidade/complicações , Tecido Adiposo/metabolismo , Animais , Movimento Celular , Células Cultivadas , Conexina 43/metabolismo , Dieta Hiperlipídica/efeitos adversos , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Junções Comunicantes , Humanos , Masculino , Camundongos , Camundongos Knockout , Obesidade/fisiopatologia , Células Estromais/metabolismo , Células Estromais/patologia
9.
Cancer Sci ; 109(11): 3494-3502, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30179292

RESUMO

The innate immune receptors, such as toll-like receptor 3 (TLR3), melanoma differentiation-associated 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I), have been shown to be differentially expressed in neuroblastoma (NB) and promote dsRNA poly (I:C)-induced NB suppression in vitro and in vivo. However, the role of another important innate immune cytosolic sensor, laboratory of genetics and physiology 2 (LGP2), in the cancer behavior of NB remains unclear. Here, we demonstrated that the expression levels of LGP2 were either low or undetectable in all NB cell lines tested with or without MYCN amplification. LGP2 expression levels were significantly increased only in NB cells without MYCN amplification, including SK-N-AS and SK-N-FI after poly (I:C) treatment in vitro and in mouse xenograft models. Ectopic expression of LGP2 in NB cells significantly enhanced poly (I:C)-induced NB cell death associated with downregulation of MDA5, RIG-I, MAVS and Bcl-2, as well as upregulation of Noxa and tBid. By immunofluorescence analyses, LGP2 localized mainly in the cytoplasm of NB cells after poly (I:C) treatment. In human NB tissue samples, cytoplasmic LGP2 expression was positively correlated with histological differentiation and inversely correlated with MYCN amplification. Positive cytoplasmic LGP2 expression in tumor tissues could predict a favorable outcome in NB patients independent of other prognostic factors. In short, LGP2 was effective in promoting poly (I:C)-induced NB suppression and cytoplasmic LGP2 can serve as an independent favorable prognostic factor in NB patients.


Assuntos
Citoplasma/metabolismo , Regulação para Baixo , Neuroblastoma/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Pré-Escolar , Citoplasma/genética , Feminino , Humanos , Imunidade Inata , Lactente , Masculino , Camundongos , Transplante de Neoplasias , Neuroblastoma/genética , Poli I-C/farmacologia , Prognóstico
10.
Dis Esophagus ; 30(1): 1-7, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26918692

RESUMO

Esophageal cancer (EC) is one of the most common cancers in China. The purpose of this study was to investigate the updated incidence rates and risk factors of EC in Nan'ao Island, where the EC incidence rate was chronically the highest in southern China. To calculate the annual incidence rate, data on 338 EC cases from Nan'ao Cancer Registry system diagnosed during 2005-2011 were collected. A case-control study was conducted to explore the EC risk factors. One hundred twenty-five alive EC patients diagnosed during 2005-2011 and 250 controls were enrolled into the case-control study. A pre-test questionnaire on demography, dietary factors, drinking water treatment, and behavioral factors was applied to collect information of all participants. The average EC incidence rates during 2005-2011 were 66.09/105, 94.62/105, 36.83/105 for both genders, males and females, respectively, in Nan'ao Island. The EC incidence rate in males was 2.40- to 4.55-fold higher than that in females in the period from 2006 to 2011 (P < 0.05). Considering the onset age, males tend to be much younger than females and reached peak incidence rate at a younger age (P < 0.05). Drinking water treatment by filter (odds ratio [OR] = 0.28, 95% confidence interval [95% CI] = 0.13-0.58) and fruit consumption (OR = 0.55, 95% CI = 0.32-0.94) reduced the risk for EC. On the contrary, the pickled vegetables consumption (OR = 2.64, 95% CI = 1.46-4.76) and liquor drinking (OR = 2.32, 95% CI = 1.21-4.44) increased the risk for EC. These results may be of importance for future research on EC etiology and prevention strategies.


Assuntos
Adenocarcinoma/epidemiologia , Consumo de Bebidas Alcoólicas/epidemiologia , Carcinoma de Células Escamosas/epidemiologia , Dieta/estatística & dados numéricos , Neoplasias Esofágicas/epidemiologia , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , China/epidemiologia , Água Potável , Feminino , Conservação de Alimentos , Frutas , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Proteção , Fatores de Risco , Distribuição por Sexo , Verduras
11.
Lab Invest ; 96(7): 719-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183205

RESUMO

Neuroblastoma (NB) is the deadliest pediatric solid tumor due to its pleomorphic molecular characteristics. In the innate immune system, toll-like receptor 3 (TLR3) recognizes viral double-stranded RNAs to initiate immune signaling. Positive TLR3 expression indicates a favorable prognosis in NB patients, and is associated with MYCN-non-amplified. However, TLR3-mediated innate immune responses remain elusive in NB. In this study, we attempted to dissect the molecular mechanism underlying TLR3-agonist polyinosinic-polycytidylic acid [poly(I:C)] treatment in NB in vivo. We established NB xenograft models in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice with MYCN-amplified SK-N-DZ (DZ) cells or MYCN-non-amplified SK-N-AS (AS) cells. Poly(I:C) treatment led to significant tumor regression in AS xenografts, but not in DZ xenografts. Through immunohistochemical analysis, significant suppression of tumor proliferation, downregulation of c-Myc expression, and upregulation of TLR3 expression were found in the treatment group. Poly(I:C) inducing activation of TLR3/IRF3-mediated innate immunity associated with downregulation of c-Myc can be found in MYCN-non-amplified SK-N-AS cells, but not in MYCN-amplified BE(2)-M17 cells. Knockdown of TLR3 disturbed poly(I:C)-induced suppression of c-Myc and upregulation of p-IRF3 in AS cells. Furthermore, poly(I:C) treatment upregulated active NF-κB, mitochondrial antioxidant manganese superoxide dismutase and 8-hydroxydeoxyguanosine, which works with reactive oxygen species (ROS) generation and DNA damage. Upregulation of active caspase 3 and cleaved poly [ADP-ribose] polymerase 1 were found in poly(I:C)-treated AS xenografts, which indicates the induction of apoptosis. Thus, our results suggest that c-Myc overexpression may increase sensitivity to poly(I:C)-induced tumor growth arrest and ROS-mediated apoptosis in NB. This study demonstrates that c-Myc protein expression has an important role in TLR3-induced innate immune responses, providing future treatment recommendations.


Assuntos
Genes myc , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Xenoenxertos , Humanos , Imunidade Inata , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/metabolismo , Neuroblastoma/terapia , Poli I-C/farmacologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genética , Regulação para Cima/efeitos dos fármacos
12.
Dis Model Mech ; 8(10): 1247-54, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26398947

RESUMO

Neuroblastoma is characterized by a wide range of clinical manifestations and associated with poor prognosis when there is amplification of MYCN oncogene or high expression of Myc oncoproteins. In a previous in vitro study, we found that the glycolytic inhibitor 2-deoxyglucose (2DG) could suppress the growth of neuroblastoma cells, particularly in those with MYCN amplification. In this study, we established a mouse model of neuroblastoma xenografts with SK-N-DZ and SK-N-AS cells treated with 2DG by intraperitoneal injection twice a week for 3 weeks at 100 or 500 mg/kg body weight. We found that 2DG was effective in suppressing the growth of both MYCN-amplified SK-N-DZ and MYCN-non-amplified SK-N-AS neuroblastoma xenografts, which was associated with downregulation of HIF-1α, PDK1 and c-Myc, and a reduction in the number of tumor blood vessels. In vitro study showed that 2DG can suppress proliferation, cause apoptosis and reduce migration of murine endothelial cells, with inhibition of the formation of lamellipodia and filopodia and disorganization of F-actin filaments. The results suggest that 2DG might simultaneously target cancer cells and endothelial cells in the neuroblastoma xenografts in mice regardless of the status of MYCN amplification, providing a potential therapeutic opportunity to use 2DG or other glycolytic inhibitors for the treatment of patients with refractory neuroblastoma.


Assuntos
Desoxiglucose/farmacologia , Células Endoteliais/patologia , Glicólise/efeitos dos fármacos , Neoplasias/patologia , Neuroblastoma/patologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
PLoS One ; 10(7): e0130959, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26134286

RESUMO

Tumor cells display a shift in energy metabolism from oxidative phosphorylation to aerobic glycolysis. A subset of papillary thyroid carcinoma (PTC) is refractory to surgery and radioactive iodine ablation. Doxorubicin and sorafenib are the drugs of choice for treating advanced thyroid cancer but both induce adverse effects. In this study, we assessed the anti-cancer activity of 2-deoxy-d-glucose (2-DG) alone and in combination with doxorubicin or sorafenib in PTC cell lines with (BCPAP) and without (CG3) the BRAFV600E mutation. BCPAP cells were more glycolytic than CG3 cells, as evidenced by their higher extracellular l-lactate production, lower intracellular ATP level, lower oxygen consumption rate (OCR), and lower ratio of OCR/extracellular acidification rate. However, dose-dependent reduction in cell viability, intracellular ATP depletion, and extracellular l-lactate production were observed after 2-DG treatment. Regression analysis showed that cell growth in both cell lines was dependent on ATP generation. 2-DG increased the chemosensitivity of BCPAP and CG3 cell lines to doxorubicin and sorafenib. These results demonstrate that the therapeutic effects of low combined doses of 2-DG and doxorubicin or sorafenib are similar to those of high doses of doxorubicin or sorafenib alone in PTC cell lines regardless of the BRAFV600E mutation.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/farmacologia , Doxorrubicina/farmacologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Glândula Tireoide/efeitos dos fármacos , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Expressão Gênica , Glicólise/efeitos dos fármacos , Humanos , Ácido Láctico/antagonistas & inibidores , Ácido Láctico/biossíntese , Mutação , Niacinamida/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sorafenibe , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
14.
Oncotarget ; 6(28): 24935-46, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26208481

RESUMO

Toll-like receptor3 (TLR3) has been confirmed to be differentially expressed in neuroblastoma (NB), and predicts a favorable prognosis with a high expression in tumor tissues. Treatment with TLR3 agonist--polyinosinic-polycytidylic acid [poly(I:C)] could induce significant but limited apoptosis in TLR3-expressing NB cells, suggesting that other viral RNA sensors, including melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) in the cytosolic compartment might also be implicated in poly(I:C)-induced NB cell death. MDA5 and RIG-I were induced by poly(I:C) to express in two of six NB cell lines, SK-N-AS (AS) and SK-N-FI, which were associated with up-regulation of caspase9 and active caspase3. While knockdown of either MDA5 or RIG-I alone is ineffective to decrease caspase9 and active caspase3, simultaneously targeting MDA5 and TLR3 showed the best effect to rescue poly(I:C) induced up-regulation of mitochondrial antiviral signaling protein (MAVS), caspase9, active caspase3, and apoptosis in AS cells. Over-expression of MDA5 in FaDu cells resulted in significantly less colony formation and more poly(I:C)-induced cell death. Further studies in human NB tissue samples revealed that MDA5 expression in NB tissues predicted a favorable prognosis synergistically with TLR3. Our findings indicate that MDA5 may serve as a complementary role in the TLR3 activated suppression of NB.


Assuntos
RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/genética , Poli I-C/farmacologia , Receptor 3 Toll-Like/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Criança , Pré-Escolar , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Helicase IFIH1 Induzida por Interferon , Estimativa de Kaplan-Meier , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Interferência de RNA , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/metabolismo
15.
Brief Bioinform ; 16(6): 1008-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25758249

RESUMO

Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.


Assuntos
Ritmo Circadiano , Biologia de Sistemas , Animais
16.
BMC Genomics ; 16: 41, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652794

RESUMO

BACKGROUND: Tanshinone IIA (TIIA) is a diterpene quinone extracted from the plant Danshen (Salvia miltiorrhiza) used in traditional Chinese herbal medicine. It has been reported to have anti-tumor potential against several kinds of cancer, including gastric cancer. In most solid tumors, a metabolic switch to glucose is a hallmark of cancer cells, which do this to provide nutrients for cell proliferation. However, the mechanism associated with glucose metabolism by which TIIA acts on gastric cancer cells remains to be elucidated. RESULTS: We found that TIIA treatment is able to significantly inhibit cell growth and the proliferation of gastric cancer in a dose-dependent manner. Using next-generation sequencing-based RNA-seq transcriptomics and quantitative proteomics-isobaric tags for relative and absolute quantification (iTRAQ), we characterized the mechanism of TIIA regulation in gastric cancer cell line AGS. In total, 16,603 unique transcripts and 102 proteins were identified. After enrichment analysis, we found that TIIA regulated genes are involved in carbohydrate metabolism, the cell cycle, apoptosis, DNA damage and cytoskeleton reorganization. Our proteomics data revealed the downregulation of intracellular ATP levels, glucose-6-phosphate isomerase and L-lactate dehydrogenase B chains by TIIA, which might work with disorders of glucose metabolism and extracellular lactate levels to suppress cell proliferation. The up-regulation of p53 and down-regulation of AKT was shown in TIIA- treated cells, which indicates the transformation of oncogenes. Severe DNA damage, cell cycle arrest at the G2/M transition and apoptosis with cytoskeleton reorganization were detected in TIIA-treated gastric cancer cells. CONCLUSIONS: Combining transcriptomics and proteomics results, we propose that TIIA treatment could lead cell stresses, including nutrient deficiency and DNA damage, by inhibiting the glucose metabolism of cancer cells. This study provides an insight into how the TIIA regulatory metabolism in gastric cancer cells suppresses cell growth, and may help improve the development of cancer therapy.


Assuntos
Abietanos/administração & dosagem , Glucose/metabolismo , Proteômica , Neoplasias Gástricas/genética , Abietanos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/biossíntese , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Transcriptoma/efeitos dos fármacos
17.
Drug Discov Today ; 19(9): 1402-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24793142

RESUMO

Gastrointestinal cancers are asymptomatic in early tumor development, leading to high mortality rates. Peri- or postoperative chemotherapy is a common strategy used to prolong the life expectancy of patients with these diseases. Understanding the molecular mechanisms by which anticancer drugs exert their effect is crucial to the development of anticancer therapies, especially when drug resistance occurs and an alternative drug is needed. By integrating high-throughput techniques and computational modeling to explore biological systems at different levels, from gene expressions to networks, systems biology approaches have been successfully applied in various fields of cancer research. In this review, we highlight chemotherapy studies that reveal potential signatures using microarray analysis, next-generation sequencing (NGS), proteomic and metabolomic approaches for the treatment of gastrointestinal cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Biologia de Sistemas/métodos , Simulação por Computador , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Gastrointestinais/patologia , Ensaios de Triagem em Larga Escala , Humanos , Metabolômica/métodos , Análise em Microsséries , Terapia de Alvo Molecular , Proteômica/métodos
18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 1935-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100313

RESUMO

Glycoprotein D (gD) of herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD-nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Herpesvirus Humano 1/química , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/química , Herpesvirus Humano 2/imunologia , Testes de Neutralização/métodos , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Sequência Conservada , Cristalografia por Raios X , Mapeamento de Epitopos/métodos , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 2/metabolismo , Humanos , Nectinas , Ligação Proteica/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
19.
In Vivo ; 26(6): 963-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23160679

RESUMO

Amentoflavone, isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina, a traditional herb, may exhibit antitumor activity. The aim of this study was to investigate the anticancer mechanism(s) of amentoflavone, such as mitochondria-mediated apoptotic cell death, in typical breast cancer MCF-7 cells. Cells treated with amentoflavone exhibited a series of cellular alterations related to apoptosis, including DNA and nuclear fragmentation, and de-regulation of intracellular reactive oxygen species (ROS) and calcium. In addition, markers of mitochondrial-mediated apoptosis, including the reduction of mitochondrial inner-membrane potential, the release of cytochrome c from mitochondria, and activation of caspase 3, were observed. In conclusion, our results present, to our knowledge, the first evidence that amentoflavone induces apoptosis of MCF-7 breast cancer cells, and that this is closely related to mitochondrial dysfunction. Amentoflavone may be a potential therapeutic agent for breast cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Biflavonoides/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-23118787

RESUMO

Meridians, acupoints, and Chinese herbs are important components of traditional Chinese medicine (TCM). They have been used for disease treatment and prevention and as alternative and complementary therapies. Systems biology integrates omics data, such as transcriptional, proteomic, and metabolomics data, in order to obtain a more global and complete picture of biological activity. To further understand the existence and functions of the three components above, we reviewed relevant research in the systems biology literature and found many recent studies that indicate the value of acupuncture and Chinese herbs. Acupuncture is useful in pain moderation and relieves various symptoms arising from acute spinal cord injury and acute ischemic stroke. Moreover, Chinese herbal extracts have been linked to wound repair, the alleviation of postmenopausal osteoporosis severity, and anti-tumor effects, among others. Different acupoints, variations in treatment duration, and herbal extracts can be used to alleviate various symptoms and conditions and to regulate biological pathways by altering gene and protein expression. Our paper demonstrates how systems biology has helped to establish a platform for investigating the efficacy of TCM in treating different diseases and improving treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA