RESUMO
Lung cancer is the leading cause of cancer-related deaths worldwide. Patients with lung cancer usually exhibit poor prognoses and low 5-year survival rates. Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both chronic lung dysfunctions resulting in lung fibrosis and increased risk of lung cancer. Myofibroblasts contribute to the progression of asthma, COPD and IPF, leading to fibrosis in the airway and lungs. A growing body of evidence demonstrates that metabolic reprogramming is a major hallmark of fibrosis, being important in the progression of fibrosis. Using gene expression microarray, we identified and validated that the lipid metabolic pathway was upregulated in lung fibroblasts upon interleukin (IL)-4, IL-13 and tumour necrosis factor (TNF)-α treatment. In this study, we described that prostaglandin E synthase (PTGES) was upregulated in lung fibroblasts after IL-4, IL-13 and TNF-α treatments. PTGES increased α-SMA levels and promoted lung fibroblast cell migration and invasion abilities. Furthermore, PTGES was upregulated in a lung fibrosis rat model in vivo. PTGES increased AKT phosphorylation, leading to activation of the HIF-1α-glycolysis pathway in lung fibroblast cells. HIF-1α inhibitor or 2-DG treatments reduced α-SMA expression in recombinant PTGES (rPTGES)-treated lung fibroblast cells. Targeting PGE2 signalling in PTGES-overexpressing cells by a PTGES inhibitor reduced α-SMA expression. In conclusion, the results of this study demonstrate that PTGES increases the expression of myofibroblast marker via HIF-1α-dependent glycolysis and contributes to myofibroblast differentiation.
Assuntos
Diferenciação Celular , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Miofibroblastos , Animais , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Humanos , Ratos , Movimento Celular , Transdução de Sinais , Pulmão/patologia , Pulmão/metabolismo , Masculino , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética , Actinas/metabolismoRESUMO
Purpose: Immune checkpoint inhibitors (ICIs) can cause life-threatening Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Large-scale original research on ICI-induced SJS/TEN is limited. This study aimed to explore the unique clinical characteristics and potential pathophysiological mechanisms of SJS/TEN induced by ICIs. Methods: This cross-sectional study compared the clinical features of SJS/TEN induced by ICIs and non-ICIs, and reviewed the case characteristics of ICI-induced SJS/TEN. Clinical features were analyzed using independent t-tests, Mann-Whitney U-tests, and multivariable regression models. Results: This study enrolled 41 cases of ICI-induced SJS/TEN and 107 non-ICI-induced cases from January 22, 2015, to May 28, 2024. ICI-induced SJS/TEN patients exhibited a trend towards a longer latency period (ß: 17, 95% CI: -1.49 to 35.48), a smaller affected body surface area (BSA) (ß: -40.68, 95% CI: -71.59 to -9.77), and milder oral and ocular mucositis than non-ICI-induced cases. A literature review identified PD-1 inhibitors as the primary ICIs involved and systemic corticosteroids as the most frequent intervention. No statistically significant difference in mortality rate was observed between patients treated with systemic corticosteroids alone and those receiving combination therapies (P= 0.85). The mortality rate for ICI-induced SJS/TEN was 24.5%. Conclusion: This study offered the largest comparative analysis to date, highlighting the unique clinical features of ICI-induced SJS/TEN, including a smaller affected BSA, a prolonged latency period trend, and milder oral and ocular mucositis. We described the epidemiology, clinical presentation, and therapeutic strategies for ICI-induced SJS/TEN. These findings not only contribute to a deeper understanding of the complex immune-inflammatory pathways in severe immune-related cutaneous adverse events (ircAEs) but also may inform the development of more targeted and effective treatments.
RESUMO
Utilizing enzyme cascades as a promising approach for targeted cancer therapies holds significant potential, yet its clinical effectiveness is substantially hindered by functional losses during delivery. Complex coacervation emerges as an intriguing strategy for designing functional nanoreactors. In this study, a noteworthy achievement is presented in the development of lactobionic acid-modified tumor microenvironment (TME)-responsive polyelectrolyte complex vesicles (HGS-PCVs) based on bioinspired homopolypeptoids, which serve as a facile, intelligent, and highly efficient nanoreactor tunable for glucose oxidase, hemoglobin, and sorafenib (SRF) to hepatic cancer cells. The TME-responsive permeability of HGS-PCVs enables the selective entry of glucose into their interior, triggering an enzymatic cascade reaction within the tumor. This intricate process generates toxic hydroxyl radicals while concurrently lowering the pH. Consequently, this pH shift enhances the SRF release, effectively promoting ferroptosis and apoptosis in the target cancer cells. Further, the administration of the HGS-PCVs not only initiates immunogenic cell death but also plays a crucial role in inducing the maturation of dendritic cells within lymph nodes. It stimulates an adaptive T-cell response, a crucial mechanism that contributes to impeding the growth of distant tumors in vivo, demonstrating the promising potential of PCVs for cancer immunotherapy.
Assuntos
Glucose Oxidase , Sorafenibe , Microambiente Tumoral , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Animais , Microambiente Tumoral/efeitos dos fármacos , Sorafenibe/química , Sorafenibe/farmacologia , Camundongos , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dissacarídeos/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Polieletrólitos/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Concentração de Íons de Hidrogênio , Terapia Combinada , Nanopartículas/químicaRESUMO
Peptide-based drugs hold great potential for cancer treatment, and their effectiveness is driven by mechanisms on how peptides target cancer cells and escape from potential lysosomal entrapment post-endocytosis. Yet, the mechanisms remain elusive, which hinder the design of peptide-based drugs. Here hendeca-arginine peptides (R11) are synthesized for targeted delivery in bladder carcinoma (BC), investigated the targeting efficiency and elucidated the mechanism of peptide-based delivery, with the aim of refining the design and efficacy of peptide-based therapeutics. It is demonstrated that the over-activated Piezo1/integrin ß1 (ITGB1) signaling axis significantly facilitates tumor-targeted delivery of R11 peptides via macropinocytosis. Furthermore, R11 peptides formed hydrogen bonds with integrin ß1, facilitating targeting and penetration into tumor cells. Additionally, R11 peptides protected integrin ß1 from lysosome degradation, promoting its recycling from cytoplasm to membrane. Moreover, this findings establish a positive feedback loop wherein R11 peptides activate Piezo1 by increasing membrane fusion, promoting Ca2+ releasing and resulting in enhanced integrin ß1-mediated endocytosis in both orthotopic models and clinical tissues, demonstrating effective tumor-targeted delivery. Eventually, the Piezo1/integrin ß1 signaling axis promoted cellular uptake and transport of peptides, establishing a positive feedback loop, promoting mechanical delivery to cancer and offering possibilities for drug modification in cancer therapy.
RESUMO
Histone deacetylase 5 (HDAC5) is an enzyme that deacetylates lysine residues on the N-terminal of histones and other proteins. It has been reported that HDAC5 deacetylates p53, the critical factor regulating cell cycle, in response to cellular stress, but the transcriptional products haven't been identified. Herein, we used p53 signaling pathway qPCR-chip to determine how HDAC5-mediated deacetylation of p53 affects cell cycle. However, validation using immunoblotting analysis revealed that acetylation of p53 at K120 impacted little to the expression of the genes identified using the qPCR-chip, indicating HDAC5 might deacetylate some other proteins to facilitate cell cycle via transactivating the differentially expressed genes determined by the qPCR-chip. The subsequent assays demonstrated that HDAC5 deacetylated c-Myc at K143 and K157 to facilitate the transactivation of CDK1, CDK4, and CDC25C, promoting cell cycle progression of hepatocellular carcinoma (HCC). This study shows that HDAC5 plays important roles in modulating deacetylation of c-Myc and regulating cell cycle progression, and it proves that LMK-235, the inhibitor targeting HDAC5 potentially serves as a drug for combating HCC via promoting acetylation of c-Myc at K143 and K157.
RESUMO
Background Contrast-enhanced US (CEUS) can be used preoperatively for evaluating muscle invasion in bladder cancer, which is important for determining appropriate treatment. However, diagnostic criteria for assessing this at CEUS have not been standardized. Purpose To develop and validate a CEUS Vesical Imaging Reporting and Data System (VI-RADS) for evaluating muscle invasion in bladder cancer. Materials and Methods This single-center prospective study consecutively enrolled patients with suspected bladder cancer. Participants underwent transabdominal or intracavity CEUS between July 2021 and May 2023. Participants were divided into a training set and a validation set at a 2:1 ratio based on the chronologic order of enrollment. The training set was used to identify major imaging features to include in CEUS VI-RADS, and the likelihood of muscle invasion per category was determined using a pathologic reference standard. The optimal VI-RADS category cutoff for muscle invasion was determined with use of the maximum Youden index. The validation set was assessed by novice and expert readers and used to validate the diagnostic performance and interreader agreement of the developed system. Results Overall, 126 participants (median age, 64 years [IQR, 57-71 years]; 107 male) and 67 participants (median age, 64 years [IQR, 56-69 years]; 49 male) were included in the training and validation set, respectively. In the training set, the optimal CEUS VI-RADS category cutoff for muscle invasion was VI-RADS 4 or higher (Youden index, 0.77). In the validation set, CEUS VI-RADS achieved good performance for both novice and expert readers (area under the receiver operating characteristic curve, 0.80 [95% CI: 0.70, 0.90] vs 0.88 [95% CI: 0.80, 0.97]; P = .09). The interreader agreement regarding the evaluation of CEUS VI-RADS category was 0.77 (95% CI: 0.65, 0.85) for novice readers, 0.87 (95% CI: 0.79, 0.92) for expert readers, and 0.78 (95% CI: 0.70, 0.84) for all readers. Conclusion The developed CEUS VI-RADS showed good performance and interreader agreement for the assessment of muscle invasion in bladder cancer. Chinese Clinical Trial Registry no. ChiCTR2100049435 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Morrell in this issue.
Assuntos
Meios de Contraste , Invasividade Neoplásica , Ultrassonografia , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Ultrassonografia/métodos , Invasividade Neoplásica/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/patologia , Reprodutibilidade dos TestesRESUMO
Introduction: The detection rate of benign thyroid nodules is increasing every year, with some affected patients experiencing symptoms. Ultrasound-guided thermal ablation can reduce the volume of nodules to alleviate symptoms. As the degree and speed of lesion absorption vary greatly between individuals, an effective model to predict curative effect after ablation is lacking. This study aims to predict the efficacy of ultrasound-guided thermal ablation for benign thyroid nodules using machine learning and explain the characteristics affecting the nodule volume reduction ratio (VRR). Design: Prospective study. Patients: The clinical and ultrasonic characteristics of patients who underwent ultrasound-guided thermal ablation of benign thyroid nodules at our hospital between January 2020 and January 2023 were recorded. Measurements: Six machine learning models (logistic regression, support vector machine, decision tree, random forest, eXtreme Gradient Boosting [XGBoost], and Light Gradient Boosting Machine [LGBM]) were constructed to predict efficacy; the effectiveness of each model was evaluated, and the optimal model selected. SHapley Additive exPlanations (SHAP) was used to visualize the decision process of the optimal model and analyze the characteristics affecting the VRR. Results: In total, 518 benign thyroid nodules were included: 356 in the satisfactory group (VRR ≥70% 1 year after operation) and 162 in the unsatisfactory group. The optimal XGBoost model predicted satisfactory efficacy with 78.9% accuracy, 88.8% precision, 79.8% recall rate, an F1 value of 0.84 F1, and an area under the curve of 0.86. The top five characteristics that affected VRRs were the proportion of solid components < 20%, initial nodule volume, blood flow score, peripheral blood flow pattern, and proportion of solid components 50-80%. Conclusions: The models, based on interpretable machine learning, predicted the VRR after thermal ablation for benign thyroid nodules, which provided a reference for preoperative treatment decisions.
Assuntos
Aprendizado de Máquina , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Adulto , Resultado do Tratamento , Ultrassonografia de Intervenção/métodosRESUMO
BACKGROUND/OBJECTIVES: This study aimed to assess the reactogenicity and immunogenicity of various SARS-CoV-2 vaccines and compare their protective effects against COVID-19 among healthcare workers (HCWs) during the Omicron outbreak in Taiwan. METHODS: Conducted from March 2021 to July 2023, this prospective observational study included healthy HCWs without prior COVID-19 immunization. Participants chose between adenovirus-vectored (AstraZeneca), mRNA (Moderna, BioNTech-Pfizer), and protein-based (Medigen, Novavax) vaccines. Blood samples were taken at multiple points to measure neutralizing antibody (nAb) titers, and adverse events (AEs) were recorded via questionnaires. RESULTS: Of 710 HCWs, 668 (94.1%) completed three doses, and 290 (40.8%) received a fourth dose during the Omicron outbreak. AEs were more common with AstraZeneca and Moderna vaccines, while Medigen caused fewer AEs. Initial nAb titers were highest with Moderna but waned over time regardless of the vaccine. Booster doses significantly increased nAb titers, with the highest levels observed in Moderna BA1 recipients. The fourth dose significantly reduced COVID-19 incidence, with Moderna BA1 being the most effective. CONCLUSIONS: Regular booster doses, especially with mRNA and adjuvant-protein vaccines, effectively enhance nAb levels and reduce infection rates, providing critical protection for frontline HCWs during variant outbreaks.
RESUMO
Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.
Assuntos
Calcinose , Modelos Animais de Doenças , Oligonucleotídeos Antissenso , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Animais , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Humanos , Camundongos , Calcinose/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/administração & dosagem , Masculino , Feminino , Encefalopatias/genética , Encéfalo/metabolismo , Camundongos Transgênicos , Splicing de RNA/genética , Doenças dos Gânglios da Base , Doenças NeurodegenerativasRESUMO
RATIONALE AND OBJECTIVES: Deep learning can enhance the performance of multimodal image analysis, which is known for its noninvasive attributes and complementary efficacy, in predicting axillary lymph node (ALN) metastasis. Therefore, we established a multimodal deep learning model incorporating ultrasound (US) and magnetic resonance imaging (MRI) images to predict ALN metastasis in patients with breast cancer. MATERIALS AND METHODS: A retrospective cohort of patients with histologically confirmed breast cancer from two hospitals composed of the primary cohort (n = 465) and the external validation cohort (n = 123). All patients had undergone both preoperative US and MRI scans. After data preprocessing, three convolutional neural network models were used to analyze the US and MRI images, respectively. After integrating the US and MRI deep learning prediction results (DLUS and DLMRI, respectively), a multimodal deep learning (DLMRI+US+Clinical parameter) model was constructed. The predictive ability of the proposed model was compared to that of the DLUS, DLMRI, combined bimodal (DLMRI+US), and clinical parameter models. Evaluation was performed using the area under the receiver operating characteristic curves (AUCs) and decision curves. RESULTS: A total of 588 patients with breast cancer participated in this study. The DLMRI+US+Clinical parameter model outperformed the alternative models, achieving the highest AUCs of 0.819 (95% confidence interval [CI] 0.734-0.903) and 0.809 (95% CI 0.723-0.895) on the internal and external validation sets, respectively. The decision curve analysis confirmed its clinical usefulness. CONCLUSION: The DLMRI+USï¼Clinical parameter model demonstrates the feasibility and reliability of its performance for ALN metastasis prediction in patients with breast cancer.
RESUMO
The effects of neurotoxicant cadmium (Cd) exposure on brain development have not been well elucidated. To investigate this, we have herein subjected pregnant mice to low-dose Cd throughout gestation. Using single-cell RNA sequencing (scRNA-seq), we explored the cellular responses in the embryonic brain to Cd exposure, and identified 18 distinct cell subpopulations that exhibited varied responses to Cd. Typically, Cd exposure impeded the development and maturation of cells in the brain, especially progenitor cells such as neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). It also caused significant cell subpopulation shifts in almost all the types of cells in the brain. Additionally, Cd exposure reduced the dendritic sophistication of cortical neurons in the offspring. Importantly, these changes led to aberrant Ca2+ activity in the cortex and neural behavior changes in mature offspring. These data contribute to our understanding of the effects and mechanisms of Cd exposure on brain development and highlight the importance of controlling environmental neurotoxicant exposure at the population level.
Assuntos
Encéfalo , Cádmio , Análise de Célula Única , Transcriptoma , Animais , Camundongos , Cádmio/toxicidade , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacosRESUMO
Postoperative acute kidney injury (AKI) is a common complication that is associated with chronic kidney disease, early postsurgical mortality, and prolonged hospital stays. Preterm neonates who undergo surgery are at risk factors for AKI due to underdeveloped kidneys. To date, little is known about the incidence and perioperative risk factors for AKI in preterm neonates undergoing noncardiac surgery. Preterm neonates who underwent noncardiac surgery between January May 1, 2020, and February 28, 2023, were enrolled in the trial according to the inclusion criteria. Both multivariable and logistic regression analyses were used to analyze the associations between characteristic data and AKI. In total, 106 preterm neonates met the inclusion criteria, and 25 preterm neonates (23.6%) developed postoperative AKI. Multivariate analysis revealed that the factors associated with AKI were gestational age < 32 weeks [OR: 4.88; 95% CI (1.23-19.42)], preoperative sepsis [OR: 3.98; 95% CI (1.29-12.28)], and intraoperative hypotension [OR: 3.75; 95% CI (1.26-11.15)]. Preterm neonates who developed AKI were more likely to have longer hospital length of stays (38 [18,69] days vs. 21[12,46]) and higher medical costs (93,181.6 [620450.0,173,219.0] ï¿¥ vs. 58,134.6 [31015.1,97,224,1) ï¿¥ than neonates who did not develop AKI. Preterm neonates who underwent noncardiac surgery had a high incidence of AKI. Independent risk factors for AKI in preterm neonates who underwent noncardiac surgery were low gestational age, preoperative sepsis, and intraoperative hypotension. Preterm neonates who developed AKI were more likely to have longer hospital stays and higher medical costs.
Assuntos
Injúria Renal Aguda , Recém-Nascido Prematuro , Tempo de Internação , Complicações Pós-Operatórias , Humanos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/epidemiologia , Recém-Nascido , Fatores de Risco , Masculino , Feminino , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Idade Gestacional , Incidência , Sepse/epidemiologia , Sepse/etiologia , Sepse/complicações , Procedimentos Cirúrgicos Operatórios/efeitos adversosRESUMO
Here we report a brand-new bioactive polymer featuring sulfonium moieties that exhibits the capability of inducing immunogenic cell death (ICD) for anticancer therapy. The optimized polysulfonium presents a wide spectrum of potent anticancer activity and remarkable selectivity. In-depth mechanistic studies reveal that the polymer exerts its cytotoxic effects on cancer cells through a membrane-disrupting mechanism. This further initiates the release of a plethora of damage-associated molecular patterns, effectively triggering ICD and resulting in systemic anticancer immune responses. Notably, the compound demonstrated significant efficacy in suppressing tumor growth in the B16-F10 melanoma tumor model. Furthermore, it exhibits robust immune memory effects, effectively suppressing tumor recurrence and metastasis in both the rechallenge model and the lung metastatic tumor model. To the best of our knowledge, the study represents the pioneering exportation of cationic polysulfoniums, showcasing not only their remarkable safety and efficacy against primary tumors but also their unique ability in activating long-term immune memory.
Assuntos
Antineoplásicos , Morte Celular Imunogênica , Polímeros , Animais , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos , Humanos , Linhagem Celular Tumoral , Polímeros/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Compostos de Sulfônio/química , Compostos de Sulfônio/farmacologia , Compostos de Sulfônio/uso terapêutico , Melanoma Experimental/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologiaRESUMO
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it can serve as a carbon source for P. aeruginosa in the diverse settings that it inhabits. In this study, we evaluate the production and use of two redundant P. aeruginosa L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and É-hydroxybutyrate, which, like lactate, are É-hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays reveal that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.IMPORTANCEPseudomonas aeruginosa is a major cause of lung infections in people with cystic fibrosis, of hospital-acquired infections, and of wound infections. It consumes L-lactate, which is found at substantial levels in human blood and tissues. In this study, we investigated the spatial regulation of two redundant enzymes, called LldD and LldA, which enable L-lactate metabolism in P. aeruginosa biofilms. We uncovered mechanisms and identified compounds that control the preference of P. aeruginosa for LldD versus LldA. We also showed that both enzymes contribute to its ability to survive within macrophages, a behavior that is thought to augment the chronicity and recalcitrance of infections. Our findings shed light on a key metabolic strategy used by P. aeruginosa and have the potential to inform the development of therapies targeting bacterial metabolism during infection.
Assuntos
Regulação Bacteriana da Expressão Gênica , Macrófagos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimologia , Macrófagos/microbiologia , Infecções por Pseudomonas/microbiologia , Animais , Humanos , Camundongos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Ácido Láctico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Viabilidade MicrobianaRESUMO
OBJECTIVES: Familial Crohn's disease (CD) accounts for approximately 1.5%-22.5% of all CD cases worldwide. We aimed to assess the concordance in disease subtype and phenotypic features among patients with CD and their relatives based on data from a large, well-characterized, referral center-based cohort in China. METHODS: A retrospective study was conducted on patients with familial CD who were admitted to the Sixth Affiliated Hospital of Sun Yat-sen University between January 2012 and June 2022. We analyzed the disease characteristics and performed a concordance analysis within the same family among patients with familial CD. RESULTS: Among 5150 patients, 70 (1.4%) had a family history of Crohn's disease. The median age of the patients at initial diagnosis did not differ significantly between the probands and successors of family members with CD (p = 0.25). At the initial diagnosis, 54 first-degree relatives showed moderate concordance in age (κ = 0.50) and disease location (κ = 0.44). At the last follow-up visit, all family members and first-degree relatives showed good concordance in upper gastrointestinal involvement (κ = 0.67 and 0.62) and stricturing or penetrating behavior (κ = 0.69 and 0.77), respectively. Patients with familial CD within the same family showed moderate agreement regarding anti-tumor necrosis factor α monoclonal antibody use and treatment efficacy (κ = 0.44 and 0.42) and mild agreement regarding the efficacy and adverse reactions of thiopurine (κ = 0.26 and 0.35). CONCLUSIONS: The proportion of patients with familial CD in China may be relatively low. The consistency of certain disease features in familial CD may be associated with the degree of kinship and convergence with longer follow-up duration.
Assuntos
Doença de Crohn , Fenótipo , Humanos , Doença de Crohn/genética , Masculino , Feminino , China/epidemiologia , Adulto , Estudos Retrospectivos , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Predisposição Genética para Doença , Família , CriançaRESUMO
BACKGROUND: Gelastic seizure (GS) is a rare type of epilepsy that most commonly appears in patients with hypothalamic hamartoma. It is rarely associated with other types of brain damage. This particular type of epilepsy is relatively rare and has few links to other brain lesions. Temporal lobe malacia is mostly caused by cerebral infarction or cerebral hemorrhage, which can lead to seizures. We report a case of GS in a woman with temporal lobe malacia which was reported for the first time in the literature. CASE SUMMARY: A 73-year-old female, diagnosed case of GS, presented with repetitive stereotyped laughter a month prior to presentation, happening multiple times daily and with each time lasting for 5-15s. Electroencephalogram displayed a focal seizure seen in the right temporal region. Magnetic resonance imaging head with contrast showed a right temporal lobe malacia. The patient was started on levetiracetam daily. The patient indicated that they had fully recovered and were not experiencing any recurrent or stereotyped laughter during their daily routines. These results remained consistent even after a one-year follow-up period. CONCLUSION: GS can be caused by temporal lobe malacia, which is an uncommon but potentially grave condition. The outcome of this present case exhibited the importance of the temporal lobe in the genesis of GS.
RESUMO
Regulating the process of epithelial-mesenchymal transition(EMT) is an essential strategy to inhibit tumor growth and metastasis. This study is based on the EMT process of retinoblastoma and constructs quercetin(QUE) and doxorubicin(DOX) co-loaded liposome(QD Lipo) to investigate the therapeutic effect and mechanisms of combined QUE and DOX treatment on retinoblastoma. Single-factor experiments were conducted to optimize the prescription process of QD Lipo. Eventually, spherical particles with a diameter of(108.87±1.93) nm, a PDI of 0.13±0.02, and a Zeta potential of(-34.83±1.92) mV were obtained. The encapsulation rates of QUE and DOX were 96.20%±4.40% and 91.17%±4.41%, respectively. Y79 human retinoblastoma cells were used as an in vitro cellular model, and confocal microscopy demonstrated that QD Lipo could enhance Y79 uptake efficiency. The CCK-8 assay confirmed that the optimal combination therapy effect of QUE and DOX occurred at a mass ratio of 1â¶1 to 1â¶2. Flow cytometry showed that QD Lipo enhanced the induction of apoptosis in Y79 cells. Western blot analysis revealed that QD Lipo significantly reduced the expression of EMT pathway-related proteins vimentin and α-SMA. Fluorescence assays detected a significant decrease in ROS levels in Y79 cells after treatment with QD. These results indicated that liposomal co-delivery of QUE and DOX can enhance drug delivery efficiency to retinoblastoma cells, inhibit the EMT process in retinoblastoma by downregulating ROS levels, and enhance the cytotoxicity of DOX against retinoblastoma.
Assuntos
Doxorrubicina , Transição Epitelial-Mesenquimal , Lipossomos , Quercetina , Retinoblastoma , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Retinoblastoma/tratamento farmacológico , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipossomos/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Differences in risk factors (RF) of lymph node metastasis (LNM) and prognosis between submucosal early gastric cardiac (SEGCC) and noncardiac (SEGNCC) carcinomas remain unclear. In this study, we investigated and compared RF of LNM and prognosis in 891 patients with radical gastrectomy for SEGCC (n=217) or SEGNCC (n=674). Compared with SEGNCC, SEGCC displayed significantly higher proportion of elderly patients (70 y or above), the elevated macroscopic type, well/moderately differentiated tubular and low-grade papillary adenocarcinomas, as well as low-grade tumor budding, but lower prevalence of the depressed macroscopic type, poorly differentiated tubular adenocarcinoma, mixed adenocarcinoma, poorly cohesive carcinoma, lymphovascular invasion (LVI), perineural invasion, and high-grade tumor budding. By univariate analysis, significant RF for LNM of the cohort included female sex, poor differentiation, SM2 invasion, LVI, intermediate-grade and high-grade tumor budding, whereas tumor size, histology type, and perineural invasion were the significant RF for LNM in SEGNCC. By multivariate analysis, significant independent RF for LNM included female sex and LVI in SEGCC but were female sex, mixed adenocarcinoma, LVI, and high-grade tumor budding in SEGNCC. The 5-year overall survival was significantly worse in SEGCC than in SEGNCC for patients with LNM, but not for those without. For overall survival, LNM was the only significant independent RF in SEGCC, whereas age 70 years or above and LNM were independent RF in SEGNCC. The results of our study provided the clinicopathologic evidence for individualized clinical management strategies for these 2 groups of patients and suggested different pathogenesis mechanisms between SEGCC and SEGNCC.
Assuntos
Cárdia , Gastrectomia , Metástase Linfática , Neoplasias Gástricas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenocarcinoma/patologia , Adenocarcinoma/mortalidade , Adenocarcinoma/cirurgia , Cárdia/patologia , China/epidemiologia , População do Leste Asiático , Mucosa Gástrica/patologia , Estimativa de Kaplan-Meier , Invasividade Neoplásica , Prognóstico , Fatores de Risco , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/cirurgiaRESUMO
Genome segregation is a fundamental process that preserves the genetic integrity of all organisms, but the mechanisms driving genome segregation in archaea remain enigmatic. This study delved into the unknown function of SegC (SSO0033), a novel protein thought to be involved in chromosome segregation in archaea. Using fluorescence polarization DNA binding assays, we discovered the ability of SegC to bind DNA without any sequence preference. Furthermore, we determined the crystal structure of SegC at 2.8 Å resolution, revealing the multimeric configuration and forming a large positively charged surface that can bind DNA. SegC has a tertiary structure folding similar to those of the ThDP-binding fold superfamily, but SegC shares only 5-15% sequence identity with those proteins. Unexpectedly, we found that SegC has nucleotide triphosphatase (NTPase) activity. We also determined the SegC-ADP complex structure, identifying the NTP binding pocket and relative SegC residues involved in the interaction. Interestingly, images from negative-stain electron microscopy revealed that SegC forms filamentous structures in the presence of DNA and NTPs. Further, more uniform and larger SegC-filaments are observed, when SegA-ATP was added. Notably, the introduction of SegB disrupts these oligomers, with ATP being essential for regulating filament formation. These findings provide insights into the functional and structural role of SegC in archaeal chromosome segregation.
Assuntos
Proteínas Arqueais , Segregação de Cromossomos , Modelos Moleculares , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Ligação Proteica , Cristalografia por Raios X , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/química , Sítios de Ligação , DNA Arqueal/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestruturaRESUMO
INTS11 and CPSF73 are metal-dependent endonucleases for Integrator and pre-mRNA 3'-end processing, respectively. Here, we show that the INTS11 binding partner BRAT1/CG7044, a factor important for neuronal fitness, stabilizes INTS11 in the cytoplasm and is required for Integrator function in the nucleus. Loss of BRAT1 in neural organoids leads to transcriptomic disruption and precocious expression of neurogenesis-driving transcription factors. The structures of the human INTS9-INTS11-BRAT1 and Drosophila dIntS11-CG7044 complexes reveal that the conserved C terminus of BRAT1/CG7044 is captured in the active site of INTS11, with a cysteine residue directly coordinating the metal ions. Inspired by these observations, we find that UBE3D is a binding partner for CPSF73, and UBE3D likely also uses a conserved cysteine residue to directly coordinate the active site metal ions. Our studies have revealed binding partners for INTS11 and CPSF73 that behave like cytoplasmic chaperones with a conserved impact on the nuclear functions of these enzymes.