Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308525, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308351

RESUMO

The mortality rate among cancer patients is primarily attributed to tumor metastasis. The evaluation of metastasis potential provides a powerful framework for personalized therapies. However, little work has so far been undertaken to precisely model tumor metastasis in vitro, hindering the development of preventive and therapeutic interventions. In this work, a tumor-metastasis-mimicked Transwell-integrated organoids-on-a-chip platform (TOP) for precisely evaluating tumor metastatic potential is developed. Unlike the conventional Transwell device for detecting cell migration, the engineered device facilitates the assessment of metastasis in patient-derived organoids (PDO). Furthermore, a novel Transwell chamber with a hexagon-shaped structure is developed to mimic the migration of tumor cells into surrounding tissues, allowing for the evaluation of tumor metastasis in a horizontal direction. As a proof-of-concept demonstration, tumor organoids and metastatic clusters are further evaluated at the protein, genetic, and phenotypic levels. In addition, preliminary drug screening is undertaken to highlight the potential for using the device to combat cancers. In summary, the tumor-metastasis-mimicked TOP offers unique capabilities for evaluating the metastasis potential of tumor organoids and contributes to the development of personalized cancer therapies.

2.
Small ; 19(7): e2205498, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449632

RESUMO

Targeted liposomes, as a promising carrier, have received tremendous attention in COVID-19 vaccines, molecular imaging, and cancer treatment, due to their enhanced cellular uptake and payload accumulation at target sites. However, the conventional methods for preparing targeted liposomes still suffer from limitations, including complex operation, time-consuming, and poor reproducibility. Herein, a facile and scalable strategy is developed for one-step construction of targeted liposomes using a versatile microfluidic mixing device (MMD). The engineered MMD provides an advanced synthesis platform for multifunctional liposome with high production rate and controllability. To validate the method, a programmed death-ligand 1 (PD-L1)-targeting aptamer modified indocyanine green (ICG)-liposome (Apt-ICG@Lip) is successfully constructed via the MMD. ICG and the PD-L1-targeting aptamer are used as model drug and targeting moiety, respectively. The Apt-ICG@Lip has high encapsulation efficiency (89.9 ± 1.4%) and small mean diameter (129.16 ± 5.48 nm). In vivo studies (PD-L1-expressing tumor models) show that Apt-ICG@Lip can realize PD-L1 targeted photoacoustic imaging, fluorescence imaging, and photothermal therapy. To verify the versatility of this approach, various targeted liposomes with different functions are further prepared and investigated. These experimental results demonstrate that this method is concise, efficient, and scalable to prepare multifunctional targeted liposomal nanoplatforms for molecular imaging and disease theranostics.


Assuntos
COVID-19 , Lipossomos , Humanos , Antígeno B7-H1 , Microfluídica , Vacinas contra COVID-19 , Reprodutibilidade dos Testes , Verde de Indocianina , Linhagem Celular Tumoral
3.
Micromachines (Basel) ; 13(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744560

RESUMO

Recently, indocyanine green (ICG), as an FDA-approved dye, has been widely used for phototherapy. It is essential to obtain information on the migration and aggregation of ICG in deep tissues. However, existing fluorescence imaging platforms are not able to obtain the structural information of the tissues. Here, we prepared ICG liposomes (ICG-Lips) and built a dual-wavelength photoacoustic computed tomography (PACT) system with piezoelectric ring-array transducer to image the aggregation of ICG-Lips in tumors to guide phototherapy. Visible 780 nm light excited the photoacoustic (PA) effects of the ICG-Lips and near-infrared 1064 nm light provided the imaging of the surrounding tissues. The aggregation of ICG-Lips within the tumor and the surrounding tissues was visualized by PACT in real time. This work indicates that PACT with piezoelectric ring-array transducer has great potential in the real-time monitoring of in vivo drug distribution.

4.
Front Bioeng Biotechnol ; 9: 786376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778242

RESUMO

Current Photoacoustic tomography (PAT) approaches are based on a single-element transducer that exhibits compromised performance in clinical imaging applications. For example, vascular, tumors are likely to have complicated shapes and optical absorptions, covering relatively wide spectra in acoustic signals. The wide ultrasonic spectra make it difficult to set the detection bandwidth optimally in advance. In this work, we propose a stack-layer dual-element ultrasonic transducer for PAT. The central frequencies of the two piezoelectric elements are 3.06 MHz (99.3% bandwidth at -6 dB) and 11.07 MHz (85.2% bandwidth at -6 dB), respectively. This transducer bridges the sensitivity capability of ultrasound and the high contrast of optical methods in functional photoacoustic tomography. The dual-element transducer enabled multiscale analysis of the vascular network in rat brains. Using a multi-wavelength imaging scheme, the blood oxygen saturation was also detected. The preliminary results showed the great potential of broad-bandwidth functional PAT on vascular network visualization. The method can also be extended to whole-body imaging of small animals, breast cancer detection, and finger joint imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA