Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anesthesiology ; 140(4): 786-802, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147625

RESUMO

BACKGROUND: Analgesic tolerance due to long-term use of morphine remains a challenge for pain management. Morphine acts on µ-opioid receptors and downstream of the phosphatidylinositol 3-kinase signaling pathway to activate the mammalian target of rapamycin (mTOR) pathway. Rheb is an important regulator of growth and cell-cycle progression in the central nervous system owing to its critical role in the activation of mTOR. The hypothesis was that signaling via the GTP-binding protein Rheb in the dorsal horn of the spinal cord is involved in morphine-induced tolerance. METHODS: Male and female wild-type C57BL/6J mice or transgenic mice (6 to 8 weeks old) were injected intrathecally with saline or morphine twice daily at 12-h intervals for 5 consecutive days to establish a tolerance model. Analgesia was assessed 60 min later using the tail-flick assay. After 5 days, the spine was harvested for Western blot or immunofluorescence analysis. RESULTS: Chronic morphine administration resulted in the upregulation of spinal Rheb by 4.27 ± 0.195-fold (P = 0.0036, n = 6), in turn activating mTOR by targeting rapamycin complex 1 (mTORC1). Genetic overexpression of Rheb impaired morphine analgesia, resulting in a tail-flick latency of 4.65 ± 1.10 s (P < 0.0001, n = 7) in Rheb knock-in mice compared to 10 s in control mice (10 ± 0 s). Additionally, Rheb overexpression in spinal excitatory neurons led to mTORC1 signaling overactivation. Genetic knockout of Rheb or inhibition of mTORC1 signaling by rapamycin potentiated morphine-induced tolerance (maximum possible effect, 52.60 ± 9.56% in the morphine + rapamycin group vs. 16.60 ± 8.54% in the morphine group; P < 0.0001). Moreover, activation of endogenous adenosine 5'-monophosphate-activated protein kinase inhibited Rheb upregulation and retarded the development of morphine-dependent tolerance (maximum possible effect, 39.51 ± 7.40% in morphine + metformin group vs. 15.58 ± 5.79% in morphine group; P < 0.0001). CONCLUSIONS: This study suggests spinal Rheb as a key molecular factor for regulating mammalian target of rapamycin signaling.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Feminino , Masculino , Camundongos , Animais , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Morfina/farmacologia , Sirolimo/farmacologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Dor , Mamíferos/metabolismo
2.
Biol Psychiatry ; 89(11): 1058-1072, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33353667

RESUMO

BACKGROUND: The serine-threonine kinase mTORC1 (mechanistic target of rapamycin complex 1) is essential for normal cell function but is aberrantly activated in the brain in both genetic-developmental and sporadic diseases and is associated with a spectrum of neuropsychiatric symptoms. The underlying molecular mechanisms of cognitive and neuropsychiatric symptoms remain controversial. METHODS: The present study examines behaviors in transgenic models that express Rheb, the most proximal known activator of mTORC1, and profiles striatal phosphoproteomics in a model with persistently elevated mTORC1 signaling. Biochemistry, immunohistochemistry, electrophysiology, and behavior approaches are used to examine the impact of persistently elevated mTORC1 on D1 dopamine receptor (D1R) signaling. The effect of persistently elevated mTORC1 was confirmed using D1-Cre to elevate mTORC1 activity in D1R neurons. RESULTS: We report that persistently elevated mTORC1 signaling blocks canonical D1R signaling that is dependent on DARPP-32 (dopamine- and cAMP-regulated neuronal phosphoprotein). The immediate downstream effector of mTORC1, ribosomal S6 kinase 1 (S6K1), phosphorylates and activates DARPP-32. Persistent elevation of mTORC1-S6K1 occludes dynamic D1R signaling downstream of DARPP-32 and blocks multiple D1R responses, including dynamic gene expression, D1R-dependent corticostriatal plasticity, and D1R behavioral responses including sociability. Candidate biomarkers of mTORC1-DARPP-32 occlusion are increased in the brain of human disease subjects in association with elevated mTORC1-S6K1, supporting a role for this mechanism in cognitive disease. CONCLUSIONS: The mTORC1-S6K1 intersection with D1R signaling provides a molecular framework to understand the effects of pathological mTORC1 activation on behavioral symptoms in neuropsychiatric disease.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores de Dopamina D1/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Humanos , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
3.
Biochem Biophys Res Commun ; 463(1-2): 123-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26002460

RESUMO

Polarization of epithelial cells requires vectorial sorting and transport of polarity proteins to apical or basolateral domains. Kif5b is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). To investigate the function of Kif5b in epithelial cells, we examined the phenotypes of Kif5b-deficient MDCK cells. Stable knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate, profound changes in cell morphology, loss of epithelial cell marker, and gain of mesenchymal marker, as well as increased cell migration, invasion, and tumorigenesis abilities. E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells, and their expression levels were decreased in Kif5b-deficient MDCK cells. Overexpression of E-cadherin and NMMIIA in Kif5b depleted MDCK cells could decrease mesenchymal marker expression and cell migration ability. These results indicate that stable knockdown of Kif5b in MDCK cells can lead to epithelial-mesenchymal transition, which is mediated by defective E-cadherin and NMMIIA expression.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Cinesinas/deficiência , Animais , Caderinas/metabolismo , Ciclo Celular , Linhagem Celular , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proliferação de Células , Cães , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Nus , Cadeias Pesadas de Miosina/metabolismo , Metástase Neoplásica
4.
PLoS One ; 10(4): e0126002, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25885434

RESUMO

Recent studies showed that kidney-specific inactivation of Kif3a produces kidney cysts and renal failure, suggesting that kinesin-mediated intracellular transportation is important for the establishement and maintenance of renal epithelial cell polarity and normal nephron functions. Kif5b, one of the most conserved kinesin heavy chain, is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). In order to elucidate the role of Kif5b in kidney development and function, it is essential to establish its expression profile within the organ. Therefore, in this study, we examined the expression pattern of Kif5b in mouse kidney. Kidneys from embryonic (E) 12.5-, 16.5-dpc (days post coitus) mouse fetuses, from postnatal (P) day 0, 10, 20 pups and from adult mice were collected. The distribution of Kif5b was analyzed by immunostaining. The possible involvement of Kif5b in kidney development was investigated in conditional mutant mice by using a Cre-LoxP strategy. This study showed that the distribution of Kif5b displayed spatiotemporal changes during postnatal kidney development. In kidneys of new born mice, Kif5b was strongly expressed in all developing tubules and in the ureteric bud, but not in the glomerulus or in other early-developing structures, such as the cap mesenchyme, the comma-shaped body, and the S-shaped body. In kidneys of postnatal day 20 or of older mice, however, Kif5b was localized selectively in the basolateral domain of epithelial cells of the thick ascending loop of Henle, as well as of the distal convoluted tubule, with little expression being observed in the proximal tubule or in the collecting duct. Conditional knock-down of Kif5b in mouse kidney did not result in detectable morphological defects, but it did lead to a decrease in cell proliferation rate and also to a mislocalization of Na+/K+/-ATPase, indicating that although Kif5b is non-essential for kidney morphogenesis, it is important for nephron maturation.


Assuntos
Rim/crescimento & desenvolvimento , Cinesinas/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Rim/citologia , Rim/fisiologia , Cinesinas/genética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Dados de Sequência Molecular , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Neurosci Lett ; 440(3): 344-7, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18583042

RESUMO

Amyloid beta peptide (Abeta), generated by proteolytic cleavage of the amyloid precursor protein (APP), play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of Abeta is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). There is increasing evidence supporting an interaction between APP, Abeta and metal ions. Both APP and Abeta affect ion homeostasis. Conversely, metal ions may interact with several AD-associated pathways involved in neurofibrillary tangle formation, secretase cleavage of APP, proteolytic degradation of Abeta and the generation of reactive oxygen species. However, the underlying mechanisms remain elusive. Here we first reported the differential effects of AD-related metal ions at subtoxic concentrations on the transcription levels of APP and BACE1 in PC12 cells. Copper (Cu(2+), 50-100 microM) and manganese (Mn(2+), 50-100 microM) potently increased the expression of both APP and BACE1 in a time- and concentration-dependent pattern, while zinc (Zn(2+)), iron (Fe(2+)) and aluminum (Al(3+)) did not. To uncover the mechanism(s) of the increasing expression by these ions, we observed the effects of several antioxidants and some specific inhibitors on the up-expression of APP and BACE1 by metal ions. Curcumin almost completely blocked the effects of these irons, while minocycline and sodium ferulate slightly suppressed the increased BACE1 mRNA level. Signaling pathway specific inhibitors PD98059, SB203580 and CEP11004 modestly blocked the up-transcription of APP induced by copper. These results suggest that these irons cause differential effects on the expression of APP and BACE1 in PC12 cells, and curcumin can significantly reverse their effects.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Curcumina/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Metais/farmacologia , RNA Mensageiro/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Células PC12/efeitos dos fármacos , Ratos , Sais de Tetrazólio , Tiazóis , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA