Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 74(4): 534-540, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35993204

RESUMO

Sleep deprivation (SD) has many deleterious health effects and occurs in more than 70% of pregnant women. However, the changes in sex hormones and relevant mechanisms after SD have not been well clarified. The aim of the present study was to explore the effects of SD on the secretion of sex hormones and the underlying mechanisms. Twelve pregnant Wistar rats were divided into control (CON, n = 6) and SD (n = 6) groups. Pregnant rats in the SD group were deprived of sleep for 18 h, and allowed free rest for 6 h, and then the above procedures were repeated until delivery. The CON group lived in a 12 h light/dark light cycle environment. Estradiol (E2) and progesterone (P4) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the expression of circadian clock genes, Bmal1, Clock and Per2, in hypothalamus and pituitary gland tissues were evaluated by immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The PI3K and Akt phosphorylation levels in the hypothalamic and pituitary tissues were determined by Western blot. The results showed that, compared with the CON group, the SD group exhibited significantly reduced serum E2 and P4 levels, down-regulated Bmal1, Clock and Per2 expression, as well as decreased phosphorylation levels of PI3K and Akt. But there was no significant difference of the total PI3K and Akt protein expression levels between the two groups. These results suggest that SD might affect the expression of the circadian clock genes in the hypothalamus and pituitary via PI3K/Akt pathway, and subsequently regulate the secretion of sex hormones in the pregnant rats, which hints the important roles of SD-induced changes of serum sex hormone levels in the pregnant rats.


Assuntos
Relógios Circadianos , Hormônios Esteroides Gonadais , Hipotálamo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Privação do Sono , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Feminino , Regulação da Expressão Gênica/genética , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/metabolismo , Hipotálamo/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Hipófise/metabolismo , Gravidez , Progesterona , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Privação do Sono/genética , Privação do Sono/metabolismo
2.
J Cancer ; 12(4): 1249-1257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33442423

RESUMO

The diverse tumor cell populations may be the critical roles in relapse and resistance to treatment in prostate cancer patients. This study aimed to identify new marker genes and cell subtypes among castration-resistant prostate cancer (CRPC) cells. We downloaded single-cell RNA seq profiles (GSE67980) from the Gene Expression Omnibus (GEO) database. Principal component (PC) analysis and t-Distributed Stochastic Neighbor Embedding (TSNE) analysis were performed to identify marker genes. CRPC cells were clustered and annotated. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses among marker genes were performed. A total of 1500 genes with larger standardized variance were obtained. The top 20 genes were demonstrated in each identified 20 PCs. PC with P-value < 0.05 was selected, including PC1, PC7, PC8, and PC14. The TSNE analysis classified cells as two clusters. The top 6 genes in cluster 0 included HBB, CCL5, SLITRK4, GZMB, BBIP1, and PF4V1. Plus, the top 6 genes in cluster 1 included MLEC, CCT8, CCT3, EPCAM, TMPRSS2, EIF4G2. The GO analysis revealed that these marker genes were mainly enriched in RNA catabolic process, translational initiation, mitochondrial inner membrane, cytosolic part, ribosome, cell adhesion molecule binding, cadherin binding, and structural constituent of ribosome. The KEGG analysis showed that these marker genes mainly enriched in metabolism associated pathways, including carbon metabolism, cysteine and methionine metabolism, propanoate metabolism, pyruvate metabolism, and citrate cycle pathways. To conclude, our results provide essential insights into the spectrum of cellular heterogeneity within human CRPC cells. These marker genes, GO terms and pathways may be critical in the development and progression of human CRPC.

3.
J Orthop Sci ; 26(3): 466-472, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32402505

RESUMO

BACKGROUND: Osteosarcoma is the most common primary malignant bone tumor, particularly among children and adolescents, and the prognosis of osteosarcoma patients remains poor. The NADPH oxidase 2 (NOX2) has been found over-expressed in several human cancers, and closely associated with poor prognosis. Meanwhile the role of NOX2 in osteosarcoma patients has not been reported. This study aimed to investigate the clinicopathological and prognostic significance of NOX2 in osteosarcoma patients. METHODS: Immunohistochemistry (IHC), western blot (WB) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect the expression of NOX2 in 55 primary osteosarcoma specimens and in 20 non-neoplastic bone tissue specimens. The correlations between NOX2 expression and clinicopathological parameters were analysed by using the χ2 test or Fisher's exact test. Disease free survival and overall survival of osteosarcoma patients were assessed by using the Kaplan-Meier method and Cox proportional hazards model. RESULTS: NOX2 was over-expressed significantly in osteosarcoma compared with that in non-neoplastic bone tissue, and correlated with progression free survival (P < 0.001) and overall survival (P < 0.001). The over-expression of NOX2 was associated with tumor size (P < 0.001), tumor location (P < 0.001). The Cox analysed shown that the over-expression of NOX2 was predicted to be worse PFS (hazard ratio (HR) = 4.10, P = 0.004) and OS (hazard ratio (HR) = 3.50, P = 0.010) time in osteosarcoma patients. CONCLUSIONS: The results of our study suggest that the over-expression of NOX2 is related to adverse clinical outcome, and can be viewed as an independent prognostic marker in osteosarcoma. Further research is required to verify the predictive value of NOX2 in osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Criança , Intervalo Livre de Doença , Humanos , Estimativa de Kaplan-Meier , NADPH Oxidase 2/genética , Osteossarcoma/genética , Prognóstico , Modelos de Riscos Proporcionais
4.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31840737

RESUMO

The overall survival rate of patients with hepatocellular carcinoma (HCC) has remained unchanged over the last several decades. Therefore, novel drugs and therapies are required for HCC treatment. Isoliquiritigenin (ISL), a natural flavonoid predominantly isolated from the traditional Chinese medicine Glycyrrhizae Radix (Licorice), has a high anticancer potential and broad application value in various cancers. Here, we aimed to investigate the anticancer role of ISL in the HCC cell line Hep3B. Functional analysis revealed that ISL inhibited the proliferation of Hep3B cells by causing G1/S cell cycle arrest in vitro. Meanwhile, the inhibitory effect of ISL on proliferation was also observed in vivo. Further analysis revealed that ISL could suppress the migration and metastasis of Hep3B cells in vitro and in vivo. Mechanistic analysis revealed that ISL inhibited cyclin D1 and up-regulated the proteins P21, P27 that negatively regulate the cell cycle. Furthermore, ISL induced apoptosis while inhibiting cell cycle transition. In addition, phosphatidylinositol 3'-kinase/protein kinase B (PI3K/AKT) signal pathway was suppressed by ISL treatment, and the epithelial marker E-cadherin was up-regulated when the mesenchymal markers Vimentin and N-cadherin were down-regulated. In brief, our findings suggest that ISL could be a promising agent for preventing HCC tumorigenesis and metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Ciclina D1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA