Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 160: 903-914, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502608

RESUMO

Uracil-DNA glycosylases (UDGs) are conserved DNA-repair enzymes that can be found in many species, including herpesviruses. Since they play crucial roles for efficient viral DNA replication in herpesviruses, they have been considered as potential antiviral targets. In our previous work, Staphylococcus aureus SAUGI was identified as a DNA mimic protein that targets UDGs from S. aureus, human, Herpes simplex virus (HSV) and Epstein-Barr virus (EBV). Interestingly, SAUGI has the strongest inhibitory effects with EBVUDG. Here, we determined complex structures of SAUGI with EBVUDG and another γ-herpesvirus UDG from Kaposi's sarcoma-associated herpesvirus (KSHVUDG), which SAUGI fails to effectively inhibit. Structural analysis of the SAUGI/EBVUDG complex suggests that the additional interaction between SAUGI and the leucine loop may explain why SAUGI shows the highest binding capacity with EBVUDG. In contrast, SAUGI appears to make only partial contacts with the key components responsible for the compression and stabilization of the DNA backbone in the leucine loop extension of KSHVUDG. The findings in this study provide a molecular explanation for the differential inhibitory effects and binding strengths that SAUGI has on these two UDGs, and the structural basis of the differences should be helpful in developing inhibitors that would interfere with viral DNA replication.


Assuntos
Enzimas Reparadoras do DNA/química , Gammaherpesvirinae/enzimologia , Uracila-DNA Glicosidase/química , Substituição de Aminoácidos , Enzimas Reparadoras do DNA/isolamento & purificação , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Uracila-DNA Glicosidase/isolamento & purificação , Uracila-DNA Glicosidase/metabolismo
2.
Dev Comp Immunol ; 108: 103667, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32147468

RESUMO

Viral glycoproteins are expressed by many viruses, and during infection they usually play very important roles, such as receptor attachment or membrane fusion. The mature virion of the white spot syndrome virus (WSSV) is unusual in that it contains no glycosylated proteins, and there are currently no reports of any glycosylation mechanisms in the pathogenesis of this virus. In this study, we cloned a glycosylase, mannosyl-glycoprotein endo-ß-N-acetylglucosaminidase (ENGase, EC 3.2.1.96), from Penaeus monodon and found that it was significantly up-regulated in WSSV-infected shrimp. A yeast two-hybrid assay showed that PmENGase interacted with both structural and non-structural proteins, and GST-pull down and co-immunoprecipitation (Co-IP) assays confirmed its interaction with the envelope protein VP41B. In the WSSV challenge tests, the cumulative mortality and viral copy number were significantly decreased in the PmEngase-silenced shrimp, from which we conclude that shrimp glycosylase interacts with WSSV in a way that benefits the virus. Lastly, we speculate that the deglycosylation activity of PmENGase might account for the absence of glycosylated proteins in the WSSV virion.


Assuntos
Proteínas de Artrópodes/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Penaeidae/virologia , Proteínas do Envelope Viral/metabolismo , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Aquicultura , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/isolamento & purificação , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/isolamento & purificação , Penaeidae/imunologia , Ligação Proteica/imunologia , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonucleases/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Regulação para Cima/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Vírus da Síndrome da Mancha Branca 1/metabolismo
3.
Curr Top Dev Biol ; 125: 357-373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28527578

RESUMO

Testicular nuclear receptors 2 and 4 (TR2, TR4), also known as NR2C1 and NR2C2, belong to the nuclear receptor superfamily and were first cloned in 1989 and 1994, respectively. Although classified as orphan receptors, several natural molecules, their metabolites, and synthetic compounds including polyunsaturated fatty acids (PUFAs), PUFA metabolites 13-hydroxyoctadecadienoic acid, 15-hydroxyeicosatetraenoic acid, and the antidiabetic drug thiazolidinediones can transactivate TR4. Importantly, many of these ligands/activators can also transactivate peroxisome proliferator-activated receptor gamma (PPARγ), also known as NR1C3 nuclear receptor. Both TR4 and PPARγ can bind to similar hormone response elements (HREs) located in the promoter of their common downstream target genes. However, these two nuclear receptors, even with shared ligands/activators and shared binding ability for similar HREs, have some distinct functions in many diseases they influence. In cancer, PPARγ inhibits thyroid, lung, colon, and prostate cancers but enhances bladder cancer. In contrast, TR4 inhibits liver and prostate cancer initiation but enhances pituitary corticotroph, liver, and prostate cancer progression. In type 2 diabetes, PPARγ increases insulin sensitivity but TR4 decreases insulin sensitivity. In cardiovascular disease, PPARγ inhibits atherosclerosis but TR4 enhances atherosclerosis through increasing foam cell formation. In bone physiology, PPARγ inhibits bone formation but TR4 increases bone formation. Together, the contrasting impact of TR4 and PPARγ on different diseases may raise a critical issue about drug used to target any one of these nuclear receptors.


Assuntos
Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Masculino , Especificidade de Órgãos , PPAR gama/metabolismo , Neoplasias da Próstata/metabolismo
4.
Cancer Lett ; 398: 62-69, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28373004

RESUMO

Despite the success of androgen-deprivation therapy (ADT) with the newly developed anti-androgen enzalutamide (Enz, also known as MDV3100) to suppress castration resistant prostate cancer (CRPC) in extending patient survival by an extra 4.8 months, eventually patients die with the development of Enz resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we identify an unrecognized role of Natural Killer (NK) cells in the prostate tumor microenvironment that can be better recruited to the CRPC cells to suppress ARv7 expression resulting in suppressing the Enz resistant CRPC cell growth and invasion. Mechanism dissection revealed that CRPC cells, compared to normal prostate epithelial cells, could recruit more NK cells that might then lead to alterations of the microRNA-34 and microRNA-449 to suppress both ARv7 expression and ARv7-induced EZH2 expression to suppress CRPC cell invasion. Together, these results identify a new potential therapy using recruited NK cells to better suppress the Enz resistance and cell invasion in CRPC at the later enzalutamide resistant stage.


Assuntos
Antagonistas de Androgênios/farmacologia , Antineoplásicos Hormonais/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/efeitos dos fármacos , Processamento Alternativo , Animais , Benzamidas , Linhagem Celular Tumoral , Quimiotaxia de Leucócito , Técnicas de Cocultura , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Nitrilas , Fenótipo , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Artigo em Inglês | MEDLINE | ID: mdl-26074876

RESUMO

Nuclear receptors are important to maintain the tissue homeostasis. Each receptor is tightly controlled and under a very complicated balance. In this review, we summarize the current findings regarding the nuclear receptor TR4 and its role in prostate cancer (PCa) progression. In general, TR4 can inhibit the PCa carcinogenesis. However, when PPARγ is knocked out, activation of TR4 can have an opposite effect to promote the PCa carcinogenesis. Clinical data also indicates that higher TR4 expression is found in PCa tissues with high Gleason scores compared to those tissues with low Gleason scores. In vitro and in vivo studies show that TR4 can promote PCa progression. Mechanism dissection indicates that TR4 inhibits PCa carcinogenesis through regulating the tumor suppressor ATM to reduce DNA damages. On the other hand, in the absence of PPARγ, TR4 tends to increase the stem cell population and epithelial-mesenchymal transition (EMT) via regulating CCL2, Oct4, EZH2, and miRNA-373-3p expression that results in increased PCa carcinogenesis. In opposition to PCa initiation, TR4 can increase PCa metastasis via modulating the CCL2 signals. Finally, targeting TR4 enhances the chemotherapy and radiation therapy sensitivity in PCa. Together, these data suggest TR4 is a key player to control PCa progression, and targeting TR4 with small molecules may provide us a new and better therapy to suppress PCa progression.

6.
Neoplasia ; 17(4): 339-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25925376

RESUMO

The insulin sensitizers, thiazolidinediones (TZDs), have been used as anti-diabetic drugs since the discovery of their ability to alter insulin resistance through transactivation of peroxisome proliferator-activated receptors (PPARs). However, their side effects in hepatitis, cardiovascular diseases, and bladder cancer resulted in some selling restrictions in the USA and Europe. Here, we found that the potential impact of TZDs on the prostate cancer (PCa) progression might be linked to the TR4 nuclear receptor expression. Clinical surveys found that 9% of PCa patients had one allele TR4 deletion in their tumors. TZD increased cell growth and invasion in PCa cells when TR4 was knocked down. In contrast, TZD decreased PCa progression in PCa cells with wild type TR4. Mechanism dissection found that the Harvey Rat Sarcoma (HRAS) oncogene increased on TZD treatment of the TR4 knocked-down CWR22Rv1 and C4-2 cells, and interruption with HRAS inhibitor resulted in reversal of TZD-induced PCa progression. Together, these results suggest that TZD treatment may promote PCa progression depending on the TR4 expression status that may be clinically relevant since extra caution may be needed for those diabetic PCa patients receiving TZD treatment who have one allele TR4 deletion.


Assuntos
Antidiuréticos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Tiazolidinedionas/farmacologia , Alelos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Oncoscience ; 2(2): 142-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859557

RESUMO

A recent report indicated that the TR4 nuclear receptor might suppress the prostate cancer (PCa) initiation via modulating the DNA damage/repair system. Knocking-out peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that shares similar ligands/activators with TR4, promoted PCa initiation. Here we found 9% of PCa patients have one allele of PPARG deletion. Results from in vitro cell lines and in vivo mouse model indicated that during PCa initiation TR4 roles might switch from suppressor to enhancer in prostate cells when PPARG was deleted or suppressed (by antagonist GW9662). Mechanism dissection found targeting TR4 in the absence of PPARG might alter the stem cell population and epithelial-mesenchymal transition (EMT) signals. Together, these results suggest that whether TR4 can enhance or suppress PCa initiation may depend on the availability of PPARG and future potential therapy via targeting PPARG to battle PPARG-related diseases may need to consider the potential side effects of TR4 switched roles during the PCa initiation.

8.
J Virol ; 89(2): 1083-93, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378496

RESUMO

UNLABELLED: Iron is an essential nutrient for nearly all living organisms, including both hosts and invaders. Proteins such as ferritin regulate the iron levels in a cell, and in the event of a pathogenic invasion, the host can use an iron-withholding mechanism to restrict the availability of this essential nutrient to the invading pathogens. However, pathogens use various strategies to overcome this host defense. In this study, we demonstrated that white spot syndrome virus (WSSV) protein kinase 1 (PK1) interacted with shrimp ferritin in the yeast two-hybrid system. A pulldown assay and 27-MHz quartz crystal microbalance (QCM) analysis confirmed the interaction between PK1 and both ferritin and apoferritin. PK1 did not promote the release of iron ions from ferritin, but it prevented apoferritin from binding ferrous ions. When PK1 was overexpressed in Sf9 cells, the cellular labile iron pool (LIP) levels were elevated significantly. Immunoprecipitation and atomic absorption spectrophotometry (AAS) further showed that the number of iron ions bound by ferritin decreased significantly at 24 h post-WSSV infection. Taken together, these results suggest that PK1 prevents apoferritin from iron loading, and thus stabilizes the cellular LIP levels, and that WSSV uses this novel mechanism to counteract the host cell's iron-withholding defense mechanism. IMPORTANCE: We show here that white spot syndrome virus (WSSV) ensures the availability of iron by using a previously unreported mechanism to defeat the host cell's iron-withholding defense mechanism. This defense is often implemented by ferritin, which can bind up to 4,500 iron atoms and acts to sequester free iron within the cell. WSSV's novel counterstrategy is mediated by a direct protein-protein interaction between viral protein kinase 1 (PK1) and host ferritin. PK1 interacts with both ferritin and apoferritin, suppresses apoferritin's ability to sequester free iron ions, and maintains the intracellular labile iron pool (LIP), and thus the availability of free iron is increased within cells.


Assuntos
Ferritinas/metabolismo , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Proteínas Quinases/metabolismo , Proteínas Virais/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Linhagem Celular , Centrifugação , Mecanismos de Defesa , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas de Microbalança de Cristal de Quartzo , Técnicas do Sistema de Duplo-Híbrido
9.
Int J Cancer ; 136(4): 955-64, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975468

RESUMO

Testicular nuclear receptor 4 (TR4) plays protective roles against oxidative stress and DNA damage and might contribute to aging. Our recent clinical tumor tissue staining results showed higher expression of TR4 in prostate cancer (PCa) patients with high Gleason scores compared to the tissues with the low Gleason scores. In vitro migration/invasion assays after manipulation of the TR4 expression in PCa cells showed that TR4 promoted PCa cells migration/invasion. Mechanism dissection found that the CCL2/CCR2 signal plays the key role in the mediation of TR4-promoted PCa cells migration/invasion. Chromatin immunoprecipitation and Luciferase assays further confirmed TR4 modulation of CCL2 at the transcriptional level and addition of the CCR2 antagonist led to interruption of the TR4-enhanced PCa cells migration/invasion. Finally, the orthotopic xenografted mice studies using the luciferase expressing CWR22Rv1 cells found that TR4 enhanced PCa metastasis and this increased metastasis was reversed when the CCR2 antagonist was injected into the mice. Together, these in vitro and in vivo results revealed a positive role of TR4 in PCa metastasis and demonstrated CCL2/CCR2 signaling as an important mediator in exerting TR4 action. This finding suggests that TR4 may represent a biomarker related to PCa metastasis and targeting the TR4-CCL2/CCR2 axis may become a new therapeutic approach to battle PCa metastasis.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores de Esteroides/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CCL2 , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Metástase Linfática , Masculino , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/patologia , Receptores CCR2 , Transdução de Sinais , Transcrição Gênica , Regulação para Cima
10.
Mol Endocrinol ; 28(6): 805-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24702179

RESUMO

Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus. It has been shown to play important roles in cerebellar development, forebrain myelination, folliculogenesis, gluconeogenesis, lipogenesis, muscle development, bone development, and prostate cancer progression. Here we provide a comprehensive summary of TR4 signaling including its upstream ligands/activators/suppressors, transcriptional coactivators/repressors, downstream targets, and their in vivo functions with potential impacts on TR4-related diseases. Importantly, TR4 shares similar ligands/activators with another key nuclear receptor, peroxisome proliferator-activated receptor γ, which raised several interesting questions about how these 2 nuclear receptors may collaborate with or counteract each other's function in their related diseases. Clear dissection of such molecular mechanisms and their differential roles in various diseases may help researchers to design new potential drugs with better efficacy and fewer side effects to battle TR4 and peroxisome proliferator-activated receptor γ involved diseases.


Assuntos
Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Transdução de Sinais , Envelhecimento , Animais , Doenças Cardiovasculares/genética , Humanos , Infertilidade/genética , Síndrome Metabólica/genética , Camundongos Knockout , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Receptores de Esteroides/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia
11.
Endocr Relat Cancer ; 21(3): R279-300, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623743

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ, NR1C3) and testicular receptor 4 nuclear receptor (TR4, NR2C2) are two members of the nuclear receptor (NR) superfamily that can be activated by several similar ligands/activators including polyunsaturated fatty acid metabolites, such as 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, as well as some anti-diabetic drugs such as thiazolidinediones (TZDs). However, the consequences of the transactivation of these ligands/activators via these two NRs are different, with at least three distinct phenotypes. First, activation of PPARγ increases insulin sensitivity yet activation of TR4 decreases insulin sensitivity. Second, PPARγ attenuates atherosclerosis but TR4 might increase the risk of atherosclerosis. Third, PPARγ suppresses prostate cancer (PCa) development and TR4 suppresses prostate carcinogenesis yet promotes PCa metastasis. Importantly, the deregulation of either PPARγ or TR4 in PCa alone might then alter the other receptor's influences on PCa progression. Knocking out PPARγ altered the ability of TR4 to promote prostate carcinogenesis and knocking down TR4 also resulted in TZD treatment promoting PCa development, indicating that both PPARγ and TR4 might coordinate with each other to regulate PCa initiation, and the loss of either one of them might switch the other one from a tumor suppressor to a tumor promoter. These results indicate that further and detailed studies of both receptors at the same time in the same cells/organs may help us to better dissect their distinct physiological roles and develop better drug(s) with fewer side effects to battle PPARγ- and TR4-related diseases including tumor and cardiovascular diseases as well as metabolic disorders.


Assuntos
Doenças Metabólicas/metabolismo , Doenças Metabólicas/prevenção & controle , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , PPAR gama/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/prevenção & controle , Animais , Regulação da Expressão Gênica , Humanos , Masculino
12.
Carcinogenesis ; 35(6): 1399-406, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24583925

RESUMO

Testicular nuclear receptor 4 (TR4), a member of the nuclear receptor superfamily, plays important roles in metabolism, fertility and aging. The linkage of TR4 functions in cancer progression, however, remains unclear. Using three different mouse models, we found TR4 could prevent or delay prostate cancer (PCa)/prostatic intraepithelial neoplasia development. Knocking down TR4 in human RWPE1 and mouse mPrE normal prostate cells promoted tumorigenesis under carcinogen challenge, suggesting TR4 may play a suppressor role in PCa initiation. Mechanism dissection in both in vitro cell lines and in vivo mice studies found that knocking down TR4 led to increased DNA damage with altered DNA repair system that involved the modulation of ATM expression at the transcriptional level, and addition of ATM partially interrupted the TR4 small interfering RNA-induced tumorigenesis in cell transformation assays. Immunohistochemical staining in human PCa tissue microarrays revealed ATM expression is highly correlated with TR4 expression. Together, these results suggest TR4 may function as a tumor suppressor to prevent or delay prostate tumorigenesis via regulating ATM expression at the transcriptional level.


Assuntos
Transformação Celular Neoplásica/genética , Dano ao DNA , Reparo do DNA , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Neoplasias da Próstata/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasia Prostática Intraepitelial/genética , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
13.
J Biol Chem ; 288(23): 16476-16483, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23609451

RESUMO

Prostate cancer (PCa) stem/progenitor cells are known to have higher chemoresistance than non-stem/progenitor cells, but the underlying molecular mechanism remains unclear. We found the expression of testicular nuclear receptor 4 (TR4) is significantly higher in PCa CD133(+) stem/progenitor cells compared with CD133(-) non-stem/progenitor cells. Knockdown of TR4 levels in the established PCa stem/progenitor cells and the CD133(+) population of the C4-2 PCa cell line with lentiviral TR4 siRNA led to increased drug sensitivity to the two commonly used chemotherapeutic drugs, docetaxel and etoposide, judging from significantly reduced IC50 values and increased apoptosis in the TR4 knockdown cells. Mechanism dissection studies found that suppression of TR4 in these stem/progenitor cells led to down-regulation of Oct4 expression, which, in turn, down-regulated the IL-1 receptor antagonist (IL1Ra) expression. Neutralization experiments via adding these molecules into the TR4 knockdown PCa stem/progenitor cells reversed the chemoresistance, suggesting that the TR4-Oct4-IL1Ra axis may play a critical role in the development of chemoresistance in the PCa stem/progenitor cells. Together, these studies suggest that targeting TR4 may alter chemoresistance of PCa stem/progenitor cells, and this finding provides the possibility of targeting TR4 as a new and better approach to overcome the chemoresistance problem in PCa therapeutics.


Assuntos
Antígenos CD , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/farmacologia , Glicoproteínas , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Peptídeos , Neoplasias da Próstata , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Taxoides/farmacologia , Antígeno AC133 , Linhagem Celular Tumoral , Docetaxel , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Masculino , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética
14.
J Zhejiang Univ Sci B ; 14(3): 171-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23463759

RESUMO

Testicular nuclear receptor 4 (TR4), also known as NR2C2 (nuclear receptor subfamily 2, group C, member 2), is a transcriptional factor and a member of the nuclear receptor family. TR4 was initially cloned from human and rat hypothalamus, prostate, and testes libraries. For almost two decades, its specific tissue distribution, genomic organization, and chromosomal assignment have been well investigated in humans and animals. However, it has been very difficult to study TR4's physiological functions due to a lack of specific ligands. Gene knock-out animal techniques provide an alternative approach for defining the biological functions of TR4. In vivo studies of TR4 gene knockout mice (TR4(-/-)) found that they display severe spinal curvature, subfertility, premature aging, and prostate prostatic intraepithelial neoplasia (PIN) development. Upstream modulators, downstream target gene regulation, feedback mechanisms, and differential modulation mediated by the recruitment of other nuclear receptors and coregulators have been identified in studies using the TR4(-/-) phenotype. With the establishment of a tissue-specific TR4(-/-) mouse model, research on TR4 will be more convenient in the future.


Assuntos
Senilidade Prematura/metabolismo , Modelos Animais de Doenças , Infertilidade/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/química , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Neoplasia Prostática Intraepitelial/metabolismo , Curvaturas da Coluna Vertebral/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Knockout
15.
Urology ; 81(5): 1109.e1-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23522297

RESUMO

OBJECTIVE: To investigate the role of peroxisome proliferator-activated receptor γ (PPARγ) in bladder cancer (BCa) progression. MATERIALS AND METHODS: The gene copy number of PPARγ in human BCa tissue samples was analyzed by fluorescence in situ hybridization. The migration and invasive ability of human BCa cell lines with different PPARγ expression levels or treated with thiazolidinedione-rosiglitazone, a PPARγ agonist and an antidiabetic drug, were investigated. RESULTS: PPARγ amplification was increased dramatically in BCa tissue compared with normal urothelium (38.1% vs 4.3%, P = .0082) and in tumors with lymph node metastasis compared with those without metastasis (75.0% vs 15.4%, P = .0176). The human BCa cell line 5637 with strong PPARγ expression demonstrated a greater ability for cell migration and invasion than the UMUC-3 cell line with weak PPARγ expression. Knocking down PPARγ in BCa 5637 cells led to decreased cell migration, and activation of PPARγ with thiazolidinedione-rosiglitazone promoted their migration and invasive ability. CONCLUSION: PPARγ amplification in BCa could play an important role in BCa cell migration and invasion. Alteration of PPARγ expression by PPARγ-small interfering ribonucleic acid or activation by its agonist rosiglitazone, a diabetic thiazolidinedione drug, could lead to alternation of BCa cell migration and invasion.


Assuntos
Regulação Neoplásica da Expressão Gênica , PPAR gama/genética , RNA Neoplásico/genética , Tiazolidinedionas/agonistas , Neoplasias da Bexiga Urinária/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Humanos , Hipoglicemiantes/farmacologia , Hibridização in Situ Fluorescente , PPAR gama/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Rosiglitazona , Tiazolidinedionas/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
16.
Reprod Biol Endocrinol ; 10: 43, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22676849

RESUMO

BACKGROUND: Early studies suggested that TR4 nuclear receptor might play important roles in the skeletal development, yet its detailed mechanism remains unclear. METHODS: We generated TR4 knockout mice and compared skeletal development with their wild type littermates. Primary bone marrow cells were cultured and we assayed bone differentiation by alkaline phosphatase and alizarin red staining. Primary calvaria were cultured and osteoblastic marker genes were detected by quantitative PCR. Luciferase reporter assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA) were performed to demonstrate TR4 can directly regulate bone differentiation marker osteocalcin. RESULTS: We first found mice lacking TR4 might develop osteoporosis. We then found that osteoblast progenitor cells isolated from bone marrow of TR4 knockout mice displayed reduced osteoblast differentiation capacity and calcification. Osteoblast primary cultures from TR4 knockout mice calvaria also showed higher proliferation rates indicating lower osteoblast differentiation ability in mice after loss of TR4. Mechanism dissection found the expression of osteoblast markers genes, such as ALP, type I collagen alpha 1, osteocalcin, PTH, and PTHR was dramatically reduced in osteoblasts from TR4 knockout mice as compared to those from TR4 wild type mice. In vitro cell line studies with luciferase reporter assay, ChIP assay, and EMSA further demonstrated TR4 could bind directly to the promoter region of osteocalcin gene and induce its gene expression at the transcriptional level in a dose dependent manner. CONCLUSIONS: Together, these results demonstrate TR4 may function as a novel transcriptional factor to play pathophysiological roles in maintaining normal osteoblast activity during the bone development and remodeling, and disruption of TR4 function may result in multiple skeletal abnormalities.


Assuntos
Remodelação Óssea , Osteoblastos/metabolismo , Osteocalcina , Osteoporose/metabolismo , Regiões Promotoras Genéticas , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Regulação para Cima , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/patologia , Osteocalcina/biossíntese , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese , Osteoporose/patologia , RNA Mensageiro/metabolismo , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética
17.
Dev Comp Immunol ; 38(1): 128-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22564859

RESUMO

In the early days of shrimp aquaculture, wild-captured brooders usually spawned repeatedly once every 2-4days. However, since the first outbreaks of white spot disease (WSD) nearly 20years ago, captured female brooders often died soon after a single spawning. Although these deaths were clearly attributable to WSD, it has always been unclear how spawning stress could lead to an outbreak of the disease. Using real-time qPCR, we show here that while replication of the white spot syndrome virus (WSSV; the causative agent of WSD) is triggered by spawning, there was no such increase in the levels of another shrimp DNA virus, IHHNV (infectious hypodermal and hematopoietic necrosis virus). We also show that levels of activated STAT are increased in brooders during and after spawning, which is important because shrimp STAT is known to transactivate the expression of the WSSV immediate early gene ie1. Lastly, we used dsRNA silencing experiment to show that both WSSV ie1 gene expression and WSSV genome copy number were reduced significantly after shrimp STAT was knocked-down. This is the first report to demonstrate in vivo that shrimp STAT is important for WSSV replication and that spawning stress increases activated STAT, which in turn triggers WSSV replication in WSSV-infected brooders.


Assuntos
Proteínas de Artrópodes/metabolismo , Penaeidae/fisiologia , Penaeidae/virologia , Fatores de Transcrição STAT/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas de Artrópodes/genética , Densovirinae/genética , Densovirinae/fisiologia , Dosagem de Genes , Técnicas de Silenciamento de Genes , Genes Precoces , Penaeidae/genética , Fatores de Transcrição STAT/genética , Estresse Fisiológico , Vírus da Síndrome da Mancha Branca 1/genética
18.
Cell Mol Biol Lett ; 17(2): 309-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22396141

RESUMO

The testicular receptor 4 (TR4) is a member of the nuclear receptor superfamily that controls various biological activities. A protective role of TR4 against oxidative stress has recently been discovered. We here examined the protective role of TR4 against ionizing radiation (IR) and found that small hairpin RNA mediated TR4 knockdown cells were highly sensitive to IR-induced cell death. IR exposure increased the expression of TR4 in scramble control small hairpin RNA expressing cells but not in TR4 knockdown cells. Examination of IR-responsive molecules found that the expression of Gadd45a, the growth arrest and DNA damage response gene, was dramatically decreased in Tr4 deficient (TR4KO) mice tissues and could not respond to IR stimulation in TR4KO mouse embryonic fibroblast cells. This TR4 regulation of GADD45A was at the transcriptional level. Promoter analysis identified four potential TR4 response elements located in intron 3 and exon 4 of the GADD45A gene. Reporter and chromatin immunoprecipitation (ChIP) assays provided evidence indicating that TR4 regulated the GADD45A expression through TR4 response elements located in intron 3 of the GADD45A gene. Together, we find that TR4 is essential in protecting cells from IR stress. Upon IR challenges, TR4 expression is increased, thereafter inducing GADD45A through transcriptional regulation. As GADD45A is directly involved in the DNA repair pathway, this suggests that TR4 senses genotoxic stress and up-regulates GADD45A expression to protect cells from IR-induced genotoxicity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/antagonistas & inibidores , Radiação Ionizante , Animais , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Reparo do DNA/efeitos da radiação , Éxons , Fibroblastos/metabolismo , Íntrons , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA