Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 642533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968928

RESUMO

Objective: Many tissues contained resident mesenchymal stromal/stem cells (MSCs) that facilitated tissue hemostasis and repair. However, there is no typical marker to identify the resident cardiac MSCs. We aimed to determine if CD51 could be an optimal marker of cardiac MSCs and assess their therapeutic potential for mice with acute myocardial infarction (AMI). Methods: Cardiac-derived CD51+CD31-CD45-Ter119- cells (named CD51+cMSCs) were isolated from C57BL/6 mice(7-day-old) by flow cytometry. The CD51+cMSCs were characterized by proliferation capacity, multi-differentiation potential, and expression of typical MSC-related markers. Adult C57BL/6 mice (12-week-old) were utilized for an AMI model via permanently ligating the left anterior descending coronary artery. The therapeutic efficacy of CD51+cMSCs was estimated by echocardiography and pathological staining. To determine the underlying mechanism, lentiviruses were utilized to knock down gene (stem cell factor [SCF]) expression of CD51+cMSCs. Results: In this study, CD51 was expressed in the entire layers of the cardiac wall in mice, including endocardium, epicardium, and myocardium, and its expression was decreased with age. Importantly, the CD51+cMSCs possessed potent self-renewal potential and multi-lineage differentiation capacity in vitro and also expressed typical MSC-related surface proteins. Furthermore, CD51+cMSC transplantation significantly improved cardiac function and attenuated cardiac fibrosis through pro-angiogenesis activity after myocardial infarction in mice. Moreover, SCF secreted by CD51+cMSCs played an important role in angiogenesis both in vivo and in vitro. Conclusions: Collectively, CD51 is a novel marker of cardiac resident MSCs, and CD51+cMSC therapy enhances cardiac repair at least partly through SCF-mediated angiogenesis.

2.
Cardiol Res Pract ; 2020: 6210847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005452

RESUMO

OBJECTIVES: MicroRNA-125b (miR-125b) has been recognized as one of the key regulators of the inflammatory responses in cardiovascular diseases recently. This study sought to dissect the role of miR-125b in modulating the function of endothelial progenitor cells (EPCs) in the inflammatory environment of ischemic hearts. METHODS: EPCs were cultured and transfected with miR-125b mimic and negative control mimic. Cell migration and adhesion assays were performed after tumor necrosis factor-α (TNF-α) treatment to determine EPC function. Cell apoptosis was analyzed by flow cytometry. The activation of the NF-κB pathway was measured by western blotting. EPC-mediated neovascularization in vivo was studied by using a myocardial infarction model. RESULTS: miR-125b-overexpressed EPCs displayed improved cell migration, adhesion abilities, and reduced cell apoptosis compared with those of the NC group after TNF-α treatment. miR-125b overexpression in EPCs ameliorated TNF-α-induced activation of the NF-κB pathway. Mice transplanted with miR-125b-overexpressed EPCs showed improved cardiac function recovery and capillary vessel density than the ones transplanted with NC EPCs. CONCLUSIONS: miR-125b protects EPCs against TNF-α-induced inflammation and cell apoptosis by attenuating the activation of NF-κB pathway and consequently improves the cardiac function recovery and EPC-mediated neovascularization in the ischemic hearts.

3.
Mol Ther ; 28(3): 855-873, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991111

RESUMO

Mesenchymal stromal cells (MSCs) show potential for treating cardiovascular diseases, but their therapeutic efficacy exhibits significant heterogeneity depending on the tissue of origin. This study sought to identify an optimal source of MSCs for cardiovascular disease therapy. We demonstrated that Nestin was a suitable marker for cardiac MSCs (Nes+cMSCs), which were identified by their self-renewal ability, tri-lineage differentiation potential, and expression of MSC markers. Furthermore, compared with bone marrow-derived MSCs (Nes+bmMSCs) or saline-treated myocardial infarction (MI) controls, intramyocardial injection of Nes+cMSCs significantly improved cardiac function and decreased infarct size after acute MI (AMI) through paracrine actions, rather than transdifferentiation into cardiac cells in infarcted heart. We further revealed that Nes+cMSC treatment notably reduced pan-macrophage infiltration while inducing macrophages toward an anti-inflammatory M2 phenotype in ischemic myocardium. Interestingly, Periostin, which was highly expressed in Nes+cMSCs, could promote the polarization of M2-subtype macrophages, and knockdown or neutralization of Periostin remarkably reduced the therapeutic effects of Nes+cMSCs by decreasing M2 macrophages at lesion sites. Thus, the present work systemically shows that Nes+cMSCs have greater efficacy than do Nes+bmMSCs for cardiac healing after AMI, and that this occurs at least partly through Periostin-mediated M2 macrophage polarization.


Assuntos
Moléculas de Adesão Celular/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Nestina/metabolismo , Cicatrização/genética , Animais , Biomarcadores , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Genótipo , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/patologia
4.
Mol Ther ; 24(10): 1860-1872, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27397633

RESUMO

Mesenchymal stromal cells (MSCs) have shown great potential for treating inflammatory bowel disease, which is ameliorated through paracrine cross talk between MSCs and T-cells. Members of the insulin-like growth factor binding protein (IGFBP) family have important immunomodulatory functions in MSCs, but the underlying mechanisms behind these functions have not yet been clearly elucidated. In this study, we investigate whether MSC-produced IGFBP7 is involved in immune modulation using a mouse experimental colitis model. Gene expression profiling revealed that IGFBP7 was highly expressed in MSCs. Consistent with this findings, IGFBP7 knockdown in MSCs significantly decreased their immunomodulatory properties, decreasing the antiproliferative functions of MSCs against T-cells, while also having an effect on the proinflammatory cytokine production of the T-cells. Furthermore, in the mouse experimental colitis model, MSC-derived IGFBP7 ameliorated the clinical and histopathological severity of induced colonic inflammation and also restored the injured gastrointestinal mucosal tissues. In conclusion, IGFBP7 contributes significantly to MSC-mediated immune modulation, as is shown by the ability of IGFBP7 knockdown in MSCs to restore proliferation and cytokine production in T-cells. These results suggest that IGFBP7 may act as a novel MSC-secreted immunomodulatory factor.


Assuntos
Colite/terapia , Fatores Imunológicos/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Camundongos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA