Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 43(3): 1193-1199, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854535

RESUMO

BACKGROUND/AIM: Osteosarcoma (OS) is a common primary malignancy of bone in adolescents. Its highly metastatic characteristics can lead to treatment failure and poor prognosis. Although standard treatments, including surgery, radiotherapy, and chemotherapy, have progressed in the past decade, treatment options to overcome metastatic progression remain sparse. Fluoxetine, an anti-depressant, has been widely used in patients with cancer for their mental issues and was reported to possess antitumor potential. However, the effect of fluoxetine on OS remains unclear. MATERIALS AND METHODS: In this study, we used cell viability, invasion/migration transwell, wound-healing and aortic ring assays to identify the effects of fluoxetine on metastasis and progression in OS. RESULTS: Fluoxetine induced cytotoxicity in OS cells by activating both extrinsic/intrinsic apoptosis signaling pathways. Proliferation and anti-apoptosis-related factors such as cyclin D1 and X-linked inhibitor of apoptosis were suppressed by fluoxetine. Additionally, fluoxetine suppressed the invasive/migratory abilities of OS and inhibited the development of angiogenesis by reducing the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Metastasis-associated factors, vascular endothelial growth factors, matrix metallopeptidase 2 and -9, were all reduced in OS cells by fluoxetine treatment. CONCLUSION: Fluoxetine not only induces cytotoxicity and apoptosis of OS cells, but also suppresses metastasis and angiogenesis by targeting STAT3.


Assuntos
Neoplasias Ósseas , Fluoxetina , Osteossarcoma , Fator de Transcrição STAT3 , Adolescente , Humanos , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Fluoxetina/farmacologia , Osteossarcoma/tratamento farmacológico , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
2.
DNA Cell Biol ; 21(8): 551-60, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12215258

RESUMO

C/EBPbeta is one of the key transcription factors responsible for the induction of a wide array of genes. Like many proto-oncogenes and transcription factors, transcription of C/EBPbeta gene can be induced by multiple extracellular signals. Using nuclear extracts from lipopolysaccharide (LPS)-stimulated mouse liver, five trans-acting factor-binding motifs, URE1 (-376 to -352), URE2 (-253 to -223), URE3 (-220 to -190), URE4 (-123 to -103), and URE5 (-72 to -45) were identified by DNAse I footprinting assays. Competition and supershift analysis of the complexes formed at the URE2 and URE4 indicated that they contain CREB/ATF and AP-1 family factors. Furthermore, recombinant ATF2 and c-Jun proteins from mammalian and bacterial cells can bind to URE2 and URE4 but not URE1. Cotransfection experiments showed that ATF2 and c-Jun activate the C/EBPbeta gene expression cooperatively through URE2 and URE4, and this activation was greatly increased under the treatment of low concentration of anisomycin. During acute phase response, the phosphorylation of c-Jun and ATF2 was found to correlate with C/EBPbeta gene expression. Taken together, our results provide the evidences that both c-Jun and ATF2 are the regulators of C/EBPbeta gene.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Proteínas Proto-Oncogênicas c-jun/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional , Fator 2 Ativador da Transcrição , Reação de Fase Aguda/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/biossíntese , Linhagem Celular , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Elementos de Resposta
3.
J Biol Chem ; 277(43): 40403-9, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12183465

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multifunctional protein known to be involved in the regulation of transcription, translation, nuclear transport, and signal transduction. To systematically obtain insight into mechanisms of hnRNP K activities, we set out to identify protein factors that interact with hnRNP K by using glutathione S-transferase-hnRNP K affinity chromatography followed by liquid chromatography/mass spectrometry/mass spectrometry analysis. Several partner proteins in the K562 cell lysates were identified through this method. One of them is a DEAD box-containing putative RNA helicase, DDX1. In vitro binding and co-immunoprecipitation studies confirmed the protein-protein interaction between hnRNP K with DDX1, and the region spanning amino acids 1-276 of hnRNP K is apparently responsible for its physical interaction with DDX1. Interestingly, their interaction was disrupted by the addition of poly(C), poly(A), and poly(U) RNA substrates. We found that DDX1 was a homopolymeric poly(A) RNA-binding protein. On the other hand, the ATPase activity of the purified recombinant DDX1 protein was stimulated by these homopolymeric RNAs and yeast total RNA but not by DNA. Moreover, the immunoprecipitated DDX1 complex but not purified DDX1 can unwind double-stranded RNA having single-stranded poly(A) overhangs.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cromatografia de Afinidade , RNA Helicases DEAD-box , Primers do DNA , Humanos , Células K562 , Dados de Sequência Molecular , Testes de Precipitina , Ligação Proteica , RNA Helicases/química , Proteínas de Ligação a RNA/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA