Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Eur J Cancer ; 210: 114278, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151323

RESUMO

BACKGROUND: Despite improvements in colorectal cancer (CRC) treatment, the prognosis for advanced CRC patients remains poor. Disruption of protein stability is one of the important factors in cancer development and progression. In this study, we aim to identify and analyze novel dysregulated proteins in CRC, assessing their significance and the mechanisms. METHODS: Using quantitative proteomics, expression pattern analysis, and gain-of-function/loss-of-function experiments, we identify novel functional protein dysregulated by ubiquitin-proteasome axis in CRC. Prognostic significance was evaluated in a training cohort of 546 patients and externally validated in 794 patients. Mechanistic insights are gained through molecular biology experiments, deubiquitinating enzymes (DUBs) expression library screening, and RNA sequencing. RESULTS: MAFF protein emerged as the top novel candidate substrate regulated by ubiquitin-proteasome in CRC. MAFF protein was preferentially downregulated in CRC compared to adjacent normal tissues. More importantly, multicenter cohort study identified reduced MAFF protein expression as an independent predictor of overall and disease-free survival in CRC patients. The in vitro and vivo assays showed that MAFF overexpression inhibited CRC growth, while its knockdown had the opposite effect. Intriguingly, we found the abnormal expression of MAFF protein was predominantly regulated via ubiquitination of MAFF, with K48-ubiquitin being dominant. BAP1 as a nuclear deubiquitinating enzyme (DUB), bound to and deubiquitinated MAFF, thereby stabilizing it. Such stabilization upregulated DUSP5 expression, resulting in the inhibition of ERK phosphorylation. CONCLUSIONS: This study describes a novel BAP1-MAFF signaling axis which is crucial for CRC growth, potentially serving as a therapeutic target and a promising prognostic biomarker for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Ubiquitinação , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Masculino , Animais , Feminino , Proliferação de Células , Prognóstico , Camundongos , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
Mol Carcinog ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092767

RESUMO

Vascular endothelial growth factor A (VEGFA) plays a critical role as a potent angiogenesis factor and is highly expressed in hepatocellular carcinoma (HCC). Although the expression of VEGFA has been strongly linked to the aggressive nature of HCC, the specific posttranscriptional modifications that might contribute to VEGFA expression and HCC angiogenesis are not yet well understood. In this study, we aimed to investigate the epitranscriptome regulation of VEGFA in HCC. A comprehensive analysis integrating MeRIP-seq, RNA-seq, and crosslinking-immunprecipitation-seq data revealed that VEGFA was hypermethylated in HCC and identified the potential m6A regulators of VEGFA including a m6A methyltransferase complex component RBM15 and the two readers, YTHDF2 and IGF2BP3. Through rigorous cell and molecular biology experiments, RBM15 was validated as a key component of methyltransferase complex responsible for m6A methylation of VEGFA, which was subsequently recognized and stabilized by IGF2BP3 and YTHDF2, leading to enhanced VEGFA expression and VEGFA-related functions such as human umbilical vascular endothelial cells (HUVEC) migration and tube formation. In the HCC xenograft model, knockdown of RBM15, IGF2BP3, or YTHDF2 resulted in reduced expression of VEGFA, accompanied by significant inhibition of tumor growth closely associated with VEGFA expression and angiogenesis. Furthermore, our analysis of HCC clinical samples identified positive correlations between the expression levels of VEGFA and the regulators RBM15, IGF2BP3, and YTHDF2. Collectively, these findings offer novel insights into the posttranscriptional modulation of VEGFA and provide potential avenues for alternative approaches to antiangiogenesis therapy targeting VEGFA.

3.
Br J Cancer ; 131(6): 1080-1091, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39003371

RESUMO

BACKGROUND: Gastric cancer (GC) is a deadly disease with poor overall survival and limited therapeutic options. Genetic alterations such as mutations and/or deletions in chromatin remodeling gene AT-rich interactive domain 1 A (ARID1A) occur frequently in GC. Although ARID1A mutations/deletions are not a druggable target for conventional treatments, novel therapeutic strategies based on a synthetic lethal approach may be effective for the treatment of ARID1A-deficient cancers. METHODS: A kinase inhibitor library containing 551 compounds was screened in ARID1A isogenic GC cells for the ability to induce synthetic lethality effect. Selected hits' activity was validated, and the mechanism of the most potent candidate drug, AKT inhibitor AD5363 (capivasertib), on induction of the synthetic lethality with ARID1A deficiency was investigated. RESULTS: After robust vulnerability screening of 551 diverse protein kinase inhibitors, we identified the AKT inhibitor AZD5363 as being the most potent lead compound in inhibiting viability of ARID1A-/- cells. A synthetic lethality between loss of ARID1A expression and AKT inhibition by AZD5363 was validated in both GC cell model system and xenograft model. Mechanistically, AZD5363 treatment induced pyroptotic cell death in ARID1A-deficient GC cells through activation of the Caspase-3/GSDME pathway. Furthermore, ARID1A occupied the AKT gene promoter and regulated its transcription negatively, thus the GC cells deficient in ARID1A showed increased expression and phosphorylation of AKT. CONCLUSIONS: Our study demonstrates a novel synthetic lethality interaction and unique mechanism between ARID1A loss and AKT inhibition, which may provide a therapeutic and mechanistic rationale for targeted therapy on patients with ARID1A-defective GC who are most likely to be beneficial to AZD5363 treatment.


Assuntos
Proteínas de Ligação a DNA , Proteínas Proto-Oncogênicas c-akt , Piroptose , Neoplasias Gástricas , Mutações Sintéticas Letais , Fatores de Transcrição , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/antagonistas & inibidores , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a DNA/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Mutações Sintéticas Letais/efeitos dos fármacos , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia
4.
J Cancer ; 15(14): 4759-4776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006072

RESUMO

Background: Papillary Thyroid Carcinoma (PTC), a common type of thyroid cancer, has a pathogenesis that is not fully understood. This study utilizes a range of public databases, sophisticated bioinformatics tools, and empirical approaches to explore the key genetic components and pathways implicated in PTC, particularly concentrating on the Transducin-Like Enhancer of Split 4 (TLE4) gene. Methods: Public databases such as TCGA and GEO were utilized to conduct differential gene expression analysis in PTC. Hub genes were identified using Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning techniques, including Random Forest, LASSO regression, and SVM-RFE, were employed for biomarker identification. The clinical impact of the TLE4 gene was assessed in terms of diagnostic accuracy, prognostic value, and its functional enrichment analysis in PTC. Additionally, the study focused on understanding the role of TLE4 in the dynamics of immune cell infiltration, gene function enhancement, and behaviors of PTC cells like growth, migration, and invasion. To complement these analyses, in vivo studies were performed using a xenograft mouse model. Results: 244 genes with significant differential expression across various databases were identified. WGCNA indicated a strong link between specific gene modules and PTC. Machine learning analysis brought the TLE4 gene into focus as a key biomarker. Bioinformatics studies verified that TLE4 expression is lower in PTC, linking it to immune cell infiltration and the JAK-STAT signaling pathways. Experimental data revealed that decreased TLE4 expression in PTC cell lines leads to enhanced cell growth, migration, invasion, and activates the JAK/STAT pathway. In contrast, TLE4 overexpression in these cells inhibited tumor growth and metastasis. Conclusions: This study sheds light on TLE4's crucial role in PTC pathogenesis, positioning it as a potential biomarker and target for therapy. The integration of multi-omics data and advanced analytical methods provides a robust framework for understanding PTC at a molecular level, potentially guiding personalized treatment strategies.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167132, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38565386

RESUMO

The Epstein-Barr virus (EBV) is implicated in several cancers, including EBV-associated gastric cancer (EBVaGC). This study focuses on EBV-encoded BALF1 (BamH1 A fragment leftward reading frame 1), a key apoptosis regulator in EBV-related cancers, whose specific impact on EBVaGC was previously unknown. Our findings indicate that BALF1 overexpression in gastric cancer cells significantly enhances their proliferation, migration, and resistance to chemotherapy-induced apoptosis, confirming BALF1's oncogenic potential. A novel discovery is that BALF1 undergoes degradation via the ubiquitin-proteasome pathway. Through analysis of 69 deubiquitinating enzymes (DUBs), ovarian tumor protease (OTU) domain-containing protein 1 (OTUD1) emerged as a vital regulator for maintaining BALF1 protein stability. Furthermore, BALF1 was found to play a role in regulating the stability of the B-cell lymphoma-2 (Bcl-2) protein, increasing its levels through deubiquitination. This mechanism reveals BALF1's multifaceted oncogenic role in gastric cancer, as it contributes both directly and indirectly to cancer progression, particularly by stabilizing Bcl-2, known for its anti-apoptotic characteristics. These insights significantly deepen our understanding of EBV's involvement in the pathogenesis of gastric cancer. The elucidation of OTUD1's role in BALF1 regulation and its influence on Bcl-2 stabilization provide new avenues for therapeutic intervention in EBVaGC, bridging the gap between viral oncogenesis and cellular protein regulation and offering a more holistic view of gastric cancer development under the influence of EBV.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias Gástricas , Ubiquitinação , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linhagem Celular Tumoral , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proliferação de Células , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/genética , Estabilidade Proteica , Movimento Celular , Animais , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Proteínas Virais Reguladoras e Acessórias
6.
Cell Death Dis ; 14(12): 796, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052820

RESUMO

Acute myeloid leukemia (AML) cell survival and chemoresistance are influenced by the existence of bone marrow mesenchymal stem cells (BMMSCs); however, the pathways by which BMMSCs contribute to these processes remain unclear. We earlier revealed that methyltransferase-like 3 (METTL3) expression is significantly reduced in AML BMMSCs and that METTL3 mediates BMMSC adipogenesis to promote chemoresistance in human AML cell lines in vitro. In this investigation, we evaluated the METTL3 function in vivo. Mice exhibiting a conditional removal of Mettl3 in BMMSCs were developed by mating Prrx1-CreERT2;Mettl3fl/+ mice with Mettl3fl/fl mice using the CRISPR-Cas9 system. The Mettl3 deletion increased bone marrow adiposity, enhanced disease progression in the transplantation-induced MLL-AF9 AML mouse model, and chemoresistance to cytarabine. The removal of Mettl3 in BMMSCs resulted in a significant increase in BMMSC adipogenesis. This effect was attributed to the downregulation of AKT1 expression, an AKT serine/threonine kinase 1, in an m6A-dependent manner. The development of chemoresistance in AML is linked to the promoted adipogenesis of BMMSCs. We conclude that METTL3 expression in BMMSCs has a critical function in limiting AML progression and chemoresistance, providing a basis for the progression of therapeutic approaches for AML.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea , Metiltransferases/genética , Metiltransferases/metabolismo , Células-Tronco Mesenquimais/metabolismo
7.
Front Oncol ; 13: 1154107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664026

RESUMO

Background: Despite numerous observational studies on the association between serum 25-Hydroxyvitamin D levels and cutaneous melanoma, causal inferences remain ambiguous due to confounding and reverse causality. This study aimed to elucidate the causal relationship between serum 25-Hydroxyvitamin D levels and melanoma incidence using Mendelian randomization (MR). Methods: A two-sample MR was conducted using genetic variants associated with serum 25-Hydroxyvitamin D levels as instrumental variables. Summary statistics for these variants were derived from genome-wide association studies, and those for melanoma risk were obtained from a comprehensive melanoma case-control study. Robustness of the results was assessed through sensitivity analyses, including the "leave-one-out" approach and tests for potential pleiotropy. Results: The MR analysis provided substantial evidence of a positive causal relationship between serum 25-Hydroxyvitamin D levels and the incidence of cutaneous melanoma, suggesting that each unit increase in serum 25-Hydroxyvitamin D levels corresponds with an increased risk of melanoma. Tests for pleiotropy showed minimal effects, and the sensitivity analysis confirmed no disproportionate influence by any individual single nucleotide polymorphism (SNP). Conclusion: The findings indicated a potentially causal positive association between serum 25-Hydroxyvitamin D levels and melanoma risk, challenging traditional beliefs about vitamin D's role in melanoma. This emphasizes the need for a balanced and personalized approach to vitamin D supplementation and sun exposure, particularly in high-risk populations. These results should be interpreted with caution due to potential unrecognized pleiotropy and confounding factors. Future research should focus on validating these findings in diverse populations and exploring underlying biological mechanisms.

8.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614238

RESUMO

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor ß-1 (TGF-ß1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter. We further demonstrate that TGF-ß1 activated the Ras/C-Raf/MEK/ERK1/2 signaling pathway, leading to phosphorylation of ETS-1 and ETS-2, which consequently upregulates the transcription and expression of Siglec-15. Our study defines a detailed molecular profile of how Siglec-15 is transcriptionally regulated which may offer significant opportunity for therapeutic intervention on HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linhagem Celular , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
9.
J Virol ; 96(23): e0102022, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36394315

RESUMO

Hepatitis B virus (HBV) is a major risk factor for serious liver diseases. The liver plays a unique role in controlling carbohydrate metabolism to maintain the glucose level within the normal range. Chronic HBV infection has been reported to associate with a high prevalence of diabetes. However, the detailed molecular mechanism underlying the potential association remains largely unknown. Here, we report that liver-targeted delivery of small HBV surface antigen (SHBs), the most abundant viral protein of HBV, could elevate blood glucose levels and impair glucose and insulin tolerance in mice by promoting hepatic gluconeogenesis. Hepatocytes with SHB expression also exhibited increased glucose production and expression of gluconeogenic genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (PEPCK) in response to glucagon stimulation. Mechanistically, SHBs increased cellular levels of cyclic AMP (cAMP) and consequently activated protein kinase A (PKA) and its downstream effector cAMP-responsive element binding protein (CREB). SHBs-induced activation of CREB enhanced transcripts of gluconeogenic genes, thus promoting hepatic gluconeogenesis. The elevated cAMP level resulted from increased transcription activity and expression of adenylyl cyclase 1 (AC1) by SHBs through a binary E-box factor binding site (BEF). Taken together, we unveiled a novel pathogenic role and mechanism of SHBs in hepatic gluconeogenesis, and these results might highlight a potential target for preventive and therapeutic intervention in the development and progression of HBV-associated diabetes. IMPORTANCE Chronic HBV infection causes progressive liver damage and is found to be a risk factor for diabetes. However, the mechanism in the regulation of glucose metabolism by HBV remains to be established. In the current study, we demonstrate for the first time that the small hepatitis B virus surface antigen (SHBs) of HBV elevates AC1 transcription and expression to activate cAMP/PKA/CREB signaling and subsequently induces the expression of gluconeogenic genes and promotes hepatic gluconeogenesis both in vivo and in vitro. This study provides a direct link between HBV infection and diabetes and implicates that SHBs may represent a potential target for the treatment of HBV-induced metabolic disorders.


Assuntos
Gluconeogênese , Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Animais , Camundongos , Antígenos de Superfície/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Gluconeogênese/genética , Glucose/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
10.
Cancer Lett ; 532: 215582, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35122876

RESUMO

Interaction between stromal cells and acute myeloid leukemia (AML) cells in bone marrow (BM) is known to contribute importantly to chemoresistance and disease recurrence. Therefore, disruption of a crosstalk between AML cells and BM microenvironment may offer a promising therapeutic strategy for AML treatment. Here, we demonstrate that in a niche-like co-culture system, AML cells took up functional mitochondria from bone marrow stromal cells (BMSCs) and inhibition of such mitochondrial transfer by metformin, the most commonly prescribed drug for type 2 diabetes mellitus, significantly enhanced the chemosensitivity of AML cells co-cultured with BMSCs. The chemo-sensitizing effect of metformin was acted through reducing the mitochondrial transfer and mitochondrial oxidative phosphorylation (OXPHOS) in the recipient AML cells. In addition, metformin potentiated the antitumor efficacy of cytarabine (Ara-C) in vivo in an NCG immunodeficient mouse xenograft model by inhibiting the mitochondrial transfer and OXPHOS activity in the engrafted human AML cells. Altogether, this study identifies a potential application of metformin in sensitizing AML cells to chemotherapy and unveils a novel mechanism by which metformin executes such effect via blocking the mitochondrial transfer from stromal cells to AML cells.


Assuntos
Diabetes Mellitus Tipo 2 , Leucemia Mieloide Aguda , Metformina , Animais , Citarabina/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Nus , Camundongos SCID , Mitocôndrias , Células Estromais/patologia , Microambiente Tumoral
11.
J Virol ; 96(4): e0197521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34910612

RESUMO

Hepatocellular carcinoma (HCC) is a hypervascular tumor, and accumulating evidence has indicated that stimulation of angiogenesis by hepatitis B virus (HBV) may contribute to HCC malignancy. The small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV protein and has a close clinical association with HCC; however, whether SHBs contributes to HCC angiogenesis remains unknown. This study reports that the forced expression of SHBs in HCC cells promoted xenograft tumor growth and increased the microvessel density (MVD) within the tumors. Consistently, HBsAg was also positively correlated with MVD counts in HCC patients' specimens. The conditioned media from the SHBs-transfected HCC cells increased the capillary tube formation and migration of human umbilical vein endothelial cells (HUVECs). Intriguingly, the overexpression of SHBs increased vascular endothelial growth factor A (VEGFA) expression at both the mRNA and protein levels. Higher VEGFA expression levels were also observed in xenograft tumors transplanted with SHBs-expressing HCC cells and in HBsAg-positive HCC tumor tissues than in their negative controls. As expected, in the culture supernatants, the secretion of VEGFA was also significantly enhanced from HCC cells expressing SHBs, which promoted HUVEC migration and vessel formation. Furthermore, all three unfolded protein response (UPR) sensors, inositol-requiring enzyme 1α (IRE1α), protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK), and activating transcription factor 6 (ATF6), associated with ER stress were found to be activated in SHBs-expressing cells and correlated with VEGFA protein expression and secretion. Taken together, these results suggest an important role of SHBs in HCC angiogenesis and may highlight a potential target for preventive and therapeutic intervention for HBV-related HCC and its malignant progression. IMPORTANCE Chronic hepatitis B virus infection is one of the important risk factors for the development and progression of hepatocellular carcinoma (HCC). HCC is characteristic of hypervascularization even at early phases of the disease due to the overexpression of angiogenic factors like vascular endothelial growth factor A (VEGFA). However, a detailed mechanism of HBV-induced angiogenesis remains to be established. In this study, we demonstrate for the first time that the most abundant HBV protein, i.e., small surface antigen (SHBs), can enhance the angiogenic capacity of HCC cells by the upregulation of VEGFA expression both in vitro and in vivo. Mechanistically, SHBs induced endoplasmic reticulum (ER) stress, which consequently activated unfolded protein response (UPR) signaling to increase VEGFA expression and secretion. This study suggests that SHBs plays an important proangiogenic role in HBV-associated HCC and may represent a potential target for antiangiogenic therapy in HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Estresse do Retículo Endoplasmático , Antígenos de Superfície da Hepatite B/metabolismo , Neoplasias Hepáticas/patologia , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/virologia , Transdução de Sinais , Resposta a Proteínas não Dobradas , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Lett ; 519: 211-225, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34311033

RESUMO

The transient receptor potential canonical (TRPC) channels have been implicated in various types of malignancies including gastric cancer (GC). However, the detailed mechanisms of TRPC channels underlying cell proliferation and apoptosis of GC cells remain largely unknown. Here, we report that TRPC3 was highly expressed in clinical GC specimens and correlated with GC malignant progression and poor prognosis. Forced expression of TRPC3 in GC cells enhanced both receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) and promoted the nuclear factor of activated T cell 2 (NFATc2) nuclear translocation by AKT/GSK-3ß and CNB2 signaling. Pharmacological inhibition of TRPC3 or CRISPR/Cas9-mediated TRPC3 knockout effectively inhibited the growth of GC cells both in vitro and in vivo. These effects were reversible by the rescue of TRPC3 expression. Furthermore, we confirmed the role of TRPC3 and the ROCE-AKT/GSK3ß-CNB2/NFATc2 signaling cascade in regulating cell cycle checkpoint, apoptosis cascade, and intracellular ROS production in GC. Overall, our findings suggest an oncogenic role of TRPC3 in GC and may highlight a potential target of TRPC3 for therapeutic intervention of GC and its malignant progression.


Assuntos
Carcinogênese/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Apoptose/fisiologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Camundongos , Oncogenes/fisiologia , Transporte Proteico/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/patologia
13.
Mol Oncol ; 15(1): 228-245, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128264

RESUMO

Salt-inducible kinase 2 (SIK2) is an important regulator in various intracellular signaling pathways related to apoptosis, tumorigenesis and metastasis. However, the involvement of SIK2 in gastric tumorigenesis and the functional linkage with gastric cancer (GC) progression remain to be defined. Here, we report that SIK2 was significantly downregulated in human GC tissues, and reduced SIK2 expression was associated with poor prognosis of patients. Overexpression of SIK2 suppressed the migration and invasion of GC cells, whereas knockdown of SIK2 enhanced cell migratory and invasive capability as well as metastatic potential. These changes in the malignant phenotype resulted from the ability of SIK2 to suppress epithelial-mesenchymal transition via inhibition of AKT/GSK3ß/ß-catenin signaling. The inhibitory effect of SIK2 on AKT/GSK3ß/ß-catenin signaling was mediated primarily through inactivation of AKT, due to its enhanced dephosphorylation by the upregulated protein phosphatases PHLPP2 and PP2A. The upregulation of PHLPP2 and PP2A was attributable to SIK2 phosphorylation and activation of mTORC1, which inhibited autophagic degradation of these two phosphatases. These results suggest that SIK2 acts as a tumor suppressor in GC and may serve as a novel prognostic biomarker and therapeutic target for this tumor.


Assuntos
Autofagia , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Fenótipo , Fosfoproteínas Fosfatases/genética , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/genética , Regulação para Cima/genética , beta Catenina/metabolismo
14.
Cancer Lett ; 499: 175-187, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33249195

RESUMO

Chronic hepatitis B virus (HBV) infection is one of the major global health problems. Although the small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV viral protein, its pathogenic role and molecular mechanism in malignant progression of HBV-related hepatocellular carcinoma (HCC) remain largely unknown. Here we reported that SHBs expression induced epithelial-mesenchymal transition (EMT) process in HCC cells and significantly increased their migratory and invasive ability as well as metastatic potential. Mechanistically, SHBs expression in HCC cells induced endoplasmic reticulum (ER) stress that activated the activating transcription factor 4 (ATF4) to increase the expression and secretion of fibroblast growth factor 19 (FGF19). The autocrine released FGF19 in turn activated JAK2/STAT3 signaling for induction of EMT process in HCC. Notably, SHBs was positively correlated with the expression of mesenchymal markers, the phosphorylation status of JAK2 and STAT3 as well as FGF19 levels in human HCC samples. HCC patients with SHBs positive had a more advanced clinical stage and worse prognosis. These results suggest an important role of SHBs in the metastasis and progression of HCC and may highlight a potential target for preventive and therapeutic intervention of HBV-related HCC and its malignant progression.


Assuntos
Carcinoma Hepatocelular/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Neoplasias Hepáticas/imunologia , Animais , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/virologia , Proliferação de Células , Estresse do Retículo Endoplasmático/imunologia , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/sangue , Hepatite B Crônica/mortalidade , Hepatite B Crônica/virologia , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Estimativa de Kaplan-Meier , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Emerg Microbes Infect ; 8(1): 1393-1405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31533543

RESUMO

HBx is a short-lived protein whose rapid turnover is mainly regulated by ubiquitin-dependent proteasomal degradation pathways. Our prior work identified BAF155 to be one of the HBx binding partners. Since BAF155 has been shown to stabilize other members of the SWI/SNF chromatin remodelling complex by attenuating their proteasomal degradation, we proposed that BAF155 might also contribute to stabilizing HBx protein in a proteasome-dependent manner. Here we report that BAF155 protected hepatitis B virus X protein (HBx) from ubiquitin-independent proteasomal degradation by competing with the 20S proteasome subunit PSMA7 to bind to HBx. BAF155 was found to directly interact with HBx via binding of its SANT domain to the HBx region between amino acid residues 81 and 120. Expression of either full-length BAF155 or SANT domain increased HBx protein levels whereas siRNA-mediated knockdown of endogenous BAF155 reduced HBx protein levels. Increased HBx stability and steady-state level by BAF155 were attributable to inhibition of ubiquitin-independent and PSMA7-mediated protein degradation. Consequently, overexpression of BAF155 enhanced the transcriptional transactivation function of HBx, activated protooncogene expression and inhibited hepatoma cell clonogenicity. These results suggest that BAF155 plays important roles in ubiquitin-independent degradation of HBx, which may be related to the pathogenesis and carcinogenesis of HBV-associated HCC.


Assuntos
Carcinoma Hepatocelular/virologia , Neoplasias Hepáticas/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Linhagem Celular , Montagem e Desmontagem da Cromatina , Células Hep G2 , Hepatite B/complicações , Vírus da Hepatite B/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias , Replicação Viral
16.
Toxicol Appl Pharmacol ; 381: 114729, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445927

RESUMO

The PI3K/AKT signaling pathway is one of the most frequently activated signaling networks in human cancers and has become a valuable target in anticancer therapy. However, accumulating reports suggest that adverse effects such as severe liver injury and inflammation may accompany treatment with pan-PI3K and pan-AKT inhibitors. Our prior work has demonstrated that activation of the PI3K/AKT pathway has a protective role in Fas- or TNFα-induced hepatocytic cell death and liver injury. We postulated that PI3K or AKT inhibitors may exacerbate liver damage via the death factor-mediated hepatocyte apoptosis. In this study we found that several drugs targeting PI3K/AKT either clinically used or in clinical trials sensitized hepatocytes to agonistic anti-Fas antibody- or TNFα-induced apoptosis and significantly shortened the survival of mice in in vivo liver damage models. The PI3K or AKT inhibitors promoted Fas aggregation, inhibited the expression of cellular FLICE-inhibitory protein S and L (FLIPL/S), and enhanced procaspase-8 activation. Conversely, cotreatment with the AKT specific activator SC79 reversed these effects. Taken together, these findings suggest that PI3K or AKT inhibitors may render hepatocytes hypersensitive to Fas- or TNFα-induced apoptosis and liver injury.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Aminopiridinas/toxicidade , Animais , Anticorpos/toxicidade , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Imidazóis/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Purinas/toxicidade , Quinazolinonas/toxicidade , Fator de Necrose Tumoral alfa/toxicidade
17.
BMC Cancer ; 19(1): 505, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138169

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common human cancers with the high rate of recurrence, metastasis and mortality. Aberrantly expressed microRNAs (miRNAs) are associated with invasion and metastasis in various human cancers. Recently, miR-188-5p has been indicated as an oncogene in GC since it promotes GC cell growth and metastasis. However, the underlying molecular mechanism remains to be fully defined. METHODS: Using Significance Analysis of Microarrays (SAM) screening, we identified that miR-188-5p is associated with overall survival and lymph node metastasis in patients with GC. The functional impact of miR-188-5p on GC metastasis was validated using in vitro and in vivo assays. The regulatory function of miR-188-5p on Wnt/ß-catenin signaling activation through directly targeting PTEN was proven using quantitative real-time PCR, western blot analysis, a dual-luciferase assay, a Transwell assay, and immunofluorescence. Immunohistochemical analyses further confirmed the clinical significance of miR-188-5p in GC. RESULTS: MiR-188-5p diminishes tumor suppressor PTEN expression, and further increases phospho-Ser9 of GSK3ß to activate Wnt/ß-catenin signaling in GC. Consequently, miR-188-5p enhanced the migration and invasion of GC cells in vitro and tumor metastasis in vivo, whereas inhibition of miR-188-5p had the opposite effects. Moreover, miR-188-5p was negatively correlated with PTEN expression but positively correlated with nuclear ß-catenin staining in GC samples. CONCLUSIONS: Our findings revealed a model of the miR-188-5p-PTEN-ß-catenin axis in GC, which mediates the constitutive activation of Wnt/ß-catenin signaling and promotes tumor metastasis, inferring that miR-188-5p is a potential therapeutic target to treat GC.


Assuntos
Metástase Linfática/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias Gástricas/patologia , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Análise de Sobrevida , Regulação para Cima
18.
Am J Physiol Gastrointest Liver Physiol ; 316(3): G387-G396, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629471

RESUMO

Tumor necrosis factor-α (TNF-α) is a highly pleiotropic cytokine executing biological functions as diverse as cell proliferation, metabolic activation, inflammatory responses, and cell death. TNF-α can induce multiple mechanisms to initiate apoptosis in hepatocytes leading to the subsequent liver injury. Since the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway is known to have a protective role in death factor-mediated apoptosis, it is our hypothesis that activation of Akt may represent a therapeutic strategy to alleviate TNF-α-induced hepatocyte apoptosis and liver injury. We report here that the Akt activator SC79 protects hepatocytes from TNF-α-induced apoptosis and protects mice from d-galactosamine (d-Gal)/lipopolysaccharide (LPS)-induced TNF-α-mediated liver injury and damage. SC79 not only enhances the nuclear factor-κB (NF-κB) prosurvival signaling in response to TNF-α stimulation, but also increases the expression of cellular FLICE (FADD-like IL-1ß-converting enzyme)-inhibitory protein L and S (FLIPL/S), which consequently inhibits the activation of procaspase-8. Furthermore, pretreatment of the PI3K/Akt inhibitor LY294002 reverses all the SC79-induced hepatoprotective effects. These results strongly indicate that SC79 protects against TNF-α-induced hepatocyte apoptosis and suggests that SC79 is likely a promising therapeutic agent for ameliorating the development of liver injury. NEW & NOTEWORTHY SC79 protects hepatocytes from TNF-α-mediated apoptosis and mice from Gal/LPS-induced liver injury and damage. Cytoprotective effects of SC79 against TNF-α act through both AKT-mediated activation of NF-κB and upregulation of FLIPL/S.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Hepatócitos/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
19.
Cell Physiol Biochem ; 51(1): 80-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30448843

RESUMO

BACKGROUND/AIMS: Chronic hepatitis B virus (HBV) infection markedly increases the risk of development of hepatocellular carcinoma (HCC). Among the seven viral proteins that HBV encodes, HBV X protein (HBx) appears to have the most oncogenic potential. The mitochondria-associated HBx can induce oxidative stress in hepatocytes, leading to the production of abundant reactive oxygen species (ROS). High levels of ROS usually induce oxidative DNA damage and 8-hydroxy-2-deoxyguanosine (8-OHdG), also known as 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is one of the major products of DNA oxidation and an important biomarker for oxidative stress and carcinogenesis. Cells have evolved a mechanism to prevent oxidized nucleotides from their incorporation into DNA through nucleotide pool sanitization enzymes of MTH1 (NUDT1), MTH2 (NUDT15), MTH3 (NUDT18) and NUDT5. However, little is known as to whether HBx can regulate the expression of those enzymes and modulate the formation and accumulation of 8-oxodG in hepatocytes. METHODS: The level of 8-oxodG was assessed by ELISA in stable HBV-producing hepatoma cell lines, an HBV infectious mouse model, HBV and HBx transgenic mice and HBV-infected patients versus their respective controls. Expression of MTH1, MTH2, MTH3 and NUDT5 was determined by a real-time quantitative PCR and western blot analysis. Transcriptional regulation of MTH1 and MTH2 expression by HBx and the effect of HBx on MTH1 and MTH2 promoter hypermethylation were examined using a luciferase reporter assay and bisulfite sequencing analysis. RESULTS: In comparison with controls, significantly higher levels of 8-oxodG were detected in the genome and culture supernatant of stable HBV-producing HepG2.2.15 cells, in the sera and liver tissues of HBV infectious mice and HBV or HBx transgenic mice, and in the sera of HBV-infected patients. Expression of HBx in hepatocytes significantly increased 8-oxodG level and reduced the expression of MTH1 and MTH2 at both mRNA and protein levels. It was also demonstrated that HBx markedly attenuated the MTH1 or MTH2 promoter activities through hypermethylation. Furthermore, enhancement of 8-oxodG production by HBx was reversible by overexpression of MTH1 and MTH2. CONCLUSION: Our data show that HBx expression results in the accumulation of 8-oxodG in hepatocytes through inhibiting the expression of MTH1 and MTH2. This may implicate that HBx may act as a tumor promoter through facilitating the mutational potential of 8-oxodG thus connecting a possible link between HBV infection and liver carcinogenesis.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Desoxiguanosina/análogos & derivados , Monoéster Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Transativadores/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Metilação de DNA , Enzimas Reparadoras do DNA/genética , Desoxiguanosina/metabolismo , Hepatite B/metabolismo , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monoéster Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Pirofosfatases/genética , Espécies Reativas de Oxigênio/metabolismo , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
20.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209179

RESUMO

Hepatitis B spliced protein (HBSP) is known to associate with viral persistence and pathogenesis; however, its biological and clinical significance remains poorly defined. Acquired resistance to Fas-mediated apoptosis is thought to be one of the major promotors for hepatitis B virus (HBV) chronicity and malignancy. The purpose of this study was to investigate whether HBSP could protect hepatocytes against Fas-initiated apoptosis. We showed here that HBSP mediated resistance of hepatoma cells or primary human hepatocytes (PHH) to agonistic anti-Fas antibody (CH11)- or FasL-induced apoptosis. Under Fas signaling stimulation, expression of HBSP inhibited Fas aggregation and prevented recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 (or FADD-like interleukin-1ß-converting enzyme [FLICE]) into the death-inducing signaling complex (DISC) while increasing recruitment of cellular FLICE-inhibitory protein L (FLIPL) into the DISC. Those effects may be mediated through activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway as evidenced by increased cellular phosphatidylinositol (3,4,5)-trisphosphate (PIP3) content and PI3K activity and enhanced phosphorylation of mTORC2 and PDPK1 as well as Akt itself. Confirmedly, inhibition of PI3K by LY294002 reversed the effect of HBSP on Fas aggregation, FLIPL expression, and cellular apoptosis. These results indicate that HBSP functions to prevent hepatocytes from Fas-induced apoptosis by enhancing PI3K/Akt activity, which may contribute to the survival and persistence of infected hepatocytes during chronic infection.IMPORTANCE Our study revealed a previously unappreciated role of HBSP in Fas-mediated apoptosis. The antiapoptotic activity of HBSP is important for understanding hepatitis B virus pathogenesis. In particular, HBV variants associated with hepatoma carcinoma may downregulate apoptosis of hepatocytes through enhanced HBSP expression. Our study also found that Akt is centrally involved in Fas-induced hepatocyte apoptosis and revealed that interventions directed at inhibiting the activation or functional activity of Akt may be of therapeutic value in this process.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Hepatócitos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Virais/metabolismo , Receptor fas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas , Proteínas Virais/genética , Receptor fas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA