Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Nephrol ; 52(7): 582-587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34375971

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) is a prevalent complication of sickle cell anemia (SCA). Hyperfiltration that delayed detection of CKD is common in SCA patients. Identification of novel urinary biomarkers correlating with glomerular filtration rates may help to detect and predict progression of renal disease. METHODS: Reanalysis of mass spectra of urinary samples obtained from University of Illinois at Chicago identified kringle domain-containing protein HGFL. RESULTS: HGFL levels correlated with hyperfiltration, were significantly reduced at CKD stage 1 compared to stage 0, negatively correlated with progression of CKD and were suitable for differentiation of stage 1. Better prediction of CKD progression to stage 2 was observed for HGFL-based risk prediction compared to the estimated glomerular filtration rate (eGFR)-based prediction. Results from a Howard University patient cohort supported the utility of HGFL-based test for the differentiation of stage 1 of CKD. CONCLUSION: Urinary HGFL may contribute additional information beyond eGFR and improve diagnosis of early-stage CKD in SCA patients.


Assuntos
Anemia Falciforme/complicações , Fator de Crescimento de Hepatócito/urina , Proteínas Proto-Oncogênicas/urina , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/urina , Adolescente , Adulto , Idoso , Biomarcadores/urina , Progressão da Doença , Diagnóstico Precoce , Feminino , Taxa de Filtração Glomerular , Fator de Crescimento de Hepatócito/química , Humanos , Kringles , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas/química , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , Adulto Jovem
2.
Cell Mol Life Sci ; 77(13): 2579-2603, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31562565

RESUMO

Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.


Assuntos
Ebolavirus/genética , Ebolavirus/metabolismo , Regulação Viral da Expressão Gênica , Nucleoproteínas/metabolismo , Transcrição Gênica , Proteínas do Core Viral/metabolismo , Animais , Quirópteros , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas do Nucleocapsídeo , Nucleoproteínas/química , Fosforilação , Proteômica , Ribonucleoproteínas/metabolismo , Células Vero , Proteínas do Core Viral/química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo
3.
Curr Pharm Des ; 23(28): 4122-4132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28677499

RESUMO

BACKGROUND: Despite efficient suppression of HIV-1 replication, current antiviral drugs are not able to eradicate HIV-1 infection. Permanent HIV-1 suppression or complete eradication requires novel biological approaches and therapeutic strategies. Our previous studies showed that HIV-1 transcription is regulated by host cell protein phosphatase-1. We also showed that HIV-1 transcription is sensitive to the reduction of intracellular iron that affects cell cycle-dependent kinase 2. We developed protein phosphatase 1-targeting small molecules that inhibited HIV-1 transcription. We also found an additional class of protein phosphatase-1-targeting molecules that activated HIV-1 transcription and reported HIV-1 inhibitory iron chelators and novel curcumin analogs that inhibit HIV-1. Here, we review HIV-1 transcription and replication with focus on its regulation by protein phosphatase 1 and cell cycle dependent kinase 2 and describe novel small molecules that can serve as future leads for anti-HIV drug development. RESULTS: Our review describes in a non-exhaustive manner studies in which HIV-1 transcription and replication are targeted with small molecules. Previously, published studies show that HIV-1 can be inhibited with protein phosphatase-1-targeting and iron chelating compounds and curcumin analogs. These results are significant in light of the current efforts to eradicate HIV-1 through permanent inhibition. Also, HIV-1 activating compounds can be useful for "kick and kill" therapy in which the virus is reactivated prior to its inhibition by the combination antiretroviral therapy. CONCLUSION: The studies described in our review point to protein phosphatase-1 as a new drug target, intracellular iron as subject for iron chelation and novel curcumin analogs that can be developed for novel HIV-1 transcription- targeting therapeutics.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Proteína Fosfatase 1/metabolismo , Animais , Curcumina/análogos & derivados , Curcumina/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Quelantes de Ferro/farmacologia , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
Blood Adv ; 1(3): 170-183, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28203649

RESUMO

The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.

5.
Comb Chem High Throughput Screen ; 18(7): 693-700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26144283

RESUMO

Histone deacetylases (HDACs) are part of a vast family of enzymes with crucial roles in numerous biological processes, largely through their repressive influence on transcription, with serious implications in a variety of human diseases. Among different isoforms, human HDAC2 in particular draws attention as a promising target for the treatment of cancer and memory deficits associated with neurodegenerative diseases. Now the challenge is to obtain a compound that is structurally novel and truly selective to HDAC2 because most current HDAC2 inhibitors do not show isoforms selectivity and suffer from metabolic instability. In order to identify novel, and isoform-selective inhibitors for human HDAC2, we designed a shape-based hybrid query from multiple scaffolds of known chemical classes and validated it to be a more effective approach to discover diverse scaffolds than single-molecule query. The hybrid query-based screening rendered a hit compound with the N-benzylaniline scaffold which showed moderate inhibitory activity against HDAC2, and its chemical structure is diverse compared to known HDAC2 inhibitors. Notably, this compound shows the selectivity against the HDAC6, a Class II enzyme, thus has the potential to further develop into the class- and isoform-selective inhibitors. Our present study supplies an useful approach to identifying novel HDAC2 inhibitors, and can be extended to the inquires of other important biomedical targets as well.


Assuntos
Compostos de Anilina/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Compostos de Anilina/farmacologia , Domínio Catalítico , Ativação Enzimática/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular
6.
Antimicrob Agents Chemother ; 58(11): 6558-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155598

RESUMO

HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , HIV-1/genética , Quinase I-kappa B/biossíntese , Quelantes de Ferro/farmacologia , Linhagem Celular , Sobrevivência Celular , Ciclina A/biossíntese , Ciclina A/genética , Ciclina E/biossíntese , Ciclina E/genética , Ciclina T/biossíntese , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , RNA Mensageiro/biossíntese , Transcrição Reversa/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/biossíntese , Produtos do Gene gag do Vírus da Imunodeficiência Humana/biossíntese
7.
Phytochemistry ; 105: 129-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24994672

RESUMO

Microbial transformation of 20(R)-panaxadiol by the fungus Rhizopus chinensis CICC 3043 yielded seven metabolites. Their structures were elucidated on the basis of extensive spectroscopic analyses. R. chinensis could catalyze hydroxylation and further dehydrogenation at C-24 of 20(R)-panaxadiol, as well as hydroxylation at C-7, C-15, C-16, and C-29. Three of these compounds at 10µM could moderately inhibit growth of HepG2 human hepatocellular carcinoma cells with an inhibition rate of about 40%. Three compounds (also at 10µM) showed approximately 30% inhibition on NF-κB transcriptional activity in SW480 human colon carcinoma cells stably transfected with NF-κB luciferase reporter and induced by LPS.


Assuntos
Antineoplásicos/farmacologia , Ginsenosídeos/farmacologia , Rhizopus/metabolismo , Antineoplásicos/química , Biotransformação , Neoplasias do Colo/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/metabolismo , Humanos , Hidroxilação , Lipopolissacarídeos/farmacologia , Luciferases/metabolismo , Estrutura Molecular , NF-kappa B/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo
8.
Planta Med ; 80(4): 330-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24549926

RESUMO

The chemical composition of Drynaria fortunei, a traditional Chinese herbal medicine, is very complicated. In order to separate these chemicals to obtain their structural information, an orthogonal sample enrichment procedure was established. The ethyl acetate extract of D. fortunei was pre-separated by Sephadex LH-20 × polyamide columns to yield 15 fractions. These fractions were analyzed successively using a reversed-phase Agilent Zorbax SB-C18 column, coupled with diode array detection and electrospray ionization tandem mass spectrometry. The method reduced co-elution and enriched minor compounds on the basis of their chemical features. A total of 369 compounds were detected by LC/MSn, compared to less than 50 compounds without pre-separation. The pretreatment facilitated the analytical separation of flavonoids, proanthocyanidins, triterpenoids, phenolic acids, and lignans in D. fortunei, and allowed a comprehensive chemical profiling of these constituents. This method could be applied to other multicomponent herbal extracts.


Assuntos
Extratos Vegetais/química , Polypodiaceae/química , Rizoma/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Flavonoides/análise , Lignanas/análise , Fenóis/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Triterpenos/análise
9.
J Nat Prod ; 77(1): 118-24, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24387703

RESUMO

Twelve ergostanoids, named antcamphins A-L (1-12), together with 20 known triterpenoids, were isolated from fruiting bodies of the medicinal fungus Antrodia camphorata. Compounds 1 and 2 represent the first examples of norergostanes isolated from A. camphorata, and compounds 3 and 4 are the first pair of cis-trans isomers of ergostane-type triterpenoids containing an aldehyde group. Compounds 5-12 are four pairs of C-25 epimers. The structures of 1-12 were elucidated on the basis of extensive spectroscopic data analysis including NMR and HRESIMS. Particularly, the absolute configurations at C-25 for 5-12 were determined by the modified Mosher's method. These triterpenoids exhibited weak cytotoxic activities against MDA-MB-231 breast cancer cells and A549 lung cancer cells, but did not inhibit the growth of normal cells in the sulforhodamine B assay.


Assuntos
Antineoplásicos/isolamento & purificação , Antrodia/química , Ergosterol/análogos & derivados , Triterpenos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/farmacologia , Cinnamomum/microbiologia , Ensaios de Seleção de Medicamentos Antitumorais , Ergosterol/química , Ergosterol/isolamento & purificação , Ergosterol/farmacologia , Feminino , Carpóforos/química , Humanos , Estrutura Molecular , Rodaminas/farmacologia , Estereoisomerismo , Triterpenos/química , Triterpenos/farmacologia
10.
J Org Chem ; 78(23): 11835-48, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24219305

RESUMO

Fourteen novel terpene-conjugated curcuminoids, terpecurcumins J-W (1-14), have been isolated from the rhizomes of Curcuma longa L. Among them, terpecurcumins J-Q and V represent four unprecedented skeletons featuring an unusual core of hydrobenzannulated[6,6]-spiroketal (1 and 2), bicyclo[2.2.2]octene (3-7), bicyclo[3.1.3]octene (8), and spiroepoxide (13), respectively. The structures of compounds 1-14 were elucidated by extensive spectroscopic analysis, and their absolute configurations were established by electronic circular dichroism, vibrational circular dichroism, and (13)C NMR spectroscopic data analysis, together with density functional theory calculations. The structure and configuration of 1 was further confirmed by single-crystal X-ray diffraction (Cu Kα). The biogenetic pathways of 1-14 were proposed, involving Michael addition, condensation, Diels-Alder cycloaddition, and electrophilic substitution reactions. Terpecurcumins showed more potent cytotoxic activities than curcumin and ar-/ß-turmerone. Among them, terpecurcumin Q (8) exhibited IC50 of 3.9 µM against MCF-7 human breast cancer cells, and mitochondria-mediated apoptosis played an important role in the overall growth inhibition. Finally, LC/MS/MS quantitative analysis of five representative terpecurcumins indicated these novel compounds were present in C. longa at parts per million level.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcuma/química , Curcumina/farmacologia , Teoria Quântica , Terpenos/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Curcumina/análogos & derivados , Curcumina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
11.
J Nat Prod ; 75(12): 2121-31, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23153397

RESUMO

Terpecurcumins A-I (1-9), together with three known analogues (10-12), were isolated from the rhizomes of Curcuma longa (turmeric). They were derived from the hybridization of curcuminoids and bisabolanes. The structures and absolute configurations of 1-9 were elucidated on the basis of extensive spectroscopic data analysis, including NMR and electronic circular dichroism spectra. The configuration of 10 was further confirmed by X-ray crystallography. A plausible biogenetic relationship for 1-12 is proposed. Compounds 4, 6, 7, 10, and 11 showed higher cytotoxic activities (IC(50), 10.3-19.4 µM) than curcumin (IC(50), 31.3-49.2 µM) against human cancer cell lines (A549, HepG2, and MDA-MB-231).


Assuntos
Antineoplásicos Fitogênicos , Curcuma/química , Curcumina , Medicamentos de Ervas Chinesas , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Curcumina/análogos & derivados , Curcumina/química , Curcumina/isolamento & purificação , Curcumina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Rizoma/química , Rizoma/metabolismo
12.
J Asian Nat Prod Res ; 14(11): 1039-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23106376

RESUMO

Asiatic acid (AA) is a natural triterpenoid possessing anti-inflammatory, anticancer, neuroprotective, and hepatoprotective activities. Structural modification of AA may provide valuable information for further structure-activity relationship analysis. Biotransformation is an efficient, specific, and environment friendly technology for structural modification of complicated natural products. In this study, the capabilities of twenty-five strains of filamentous fungi to transform AA were screened. Two new and one known oxidation products metabolized by Fusarium avenaceum AS 3.4594 were isolated. Their chemical structures were characterized as 2-oxo-3ß,15α,23-trihydroxyurs-12-en-28-oic acid (1), 3-oxo-2,15α,23-trihydroxyurs-1,12-dien-28-oic acid (2), and 2-oxo-3ß,23-dihydroxyurs-12-en-28-oic-acid (3) by extensive analysis of spectroscopic data.


Assuntos
Fusarium/metabolismo , Triterpenos Pentacíclicos/isolamento & purificação , Biotransformação , Fusarium/química , Hepatócitos/efeitos dos fármacos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/metabolismo , Estereoisomerismo , Triterpenos
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(26): 2751-8, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21856253

RESUMO

This paper aims to investigate the metabolism and pharmacokinetics of curcumin, demethoxycurcumin and bisdemethoxycurcumin in mice tumor. To improve water solubility, nanoparticle formulations were prepared as curcuminoids-loaded solid lipid nanoparticles (curcuminoids-SLNs) and curcumin-loaded solid lipid nanoparticles (curcumin-SLNs). After intragastric administration to tumor-bearing ICR mice, the plasma and tumor samples were analyzed by liquid chromatography with ion trap mass spectrometry. We discovered that curcuminoids were mainly present as glucuronides in plasma, whereas in free form in tumor tissue. A validated LC/MS/MS method was established to determine the three free curcuminoids in tumor homogenate. Samples were separated on a Zorbax SB-C(18) column, eluted with acetonitrile-water (containing 0.1% formic acid), and detected by TSQ Quantum triple quadrupole mass spectrometer in selected reaction monitoring mode. The method showed good linearity (r(2)=0.997-0.999) over wide dynamic ranges (2-6000 ng/mL). Variations within- and between-batch never exceeded 11.2% and 13.4%, respectively. The extraction recovery rates ranged from 78.3% to 87.7%. The pharmacokinetics of curcuminoids in mice tumor fit two-compartment model and first order elimination. For curcumin-SLNs group, the dosing of 250 mg/kg of curcumin resulted in AUC((0-48 h)) of 2285 ngh/mL and C(max) of 209 ng/mL. For curcuminoids-SLNs group, the dosing equivalent to 138 mg/kg of curcumin resulted in higher tumor concentrations (AUC=2811 ngh/mL, C(max)=285 ng/mL). It appeared that co-existing curcuminoids improved the bioavailability of curcumin.


Assuntos
Cromatografia Líquida/métodos , Curcumina/análogos & derivados , Nanopartículas/administração & dosagem , Neoplasias/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Área Sob a Curva , Compostos de Bifenilo/química , Curcumina/administração & dosagem , Curcumina/metabolismo , Curcumina/farmacocinética , Diarileptanoides , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Lignanas/química , Modelos Lineares , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química , Transplante de Neoplasias , Neoplasias/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA