Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 265: 116068, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141284

RESUMO

Thirteen new sirenin derivatives named eupenicisirenins C-O (1-13), along with a biosynthetically related known one (14), were isolated from the mangrove sediment-derived fungus Penicillium sp. SCSIO 41410. The structures, which possessed a rare cyclopropane moiety, were confirmed by extensive analyses of the spectroscopic data, quantum chemical calculations, and X-ray diffraction. Among them, eupenicisirenin C (1) exhibited the strongest NF-κB inhibitory activities, as well as suppressing effects on cGAS-STING pathway. Moreover, 1 showed the significant inhibitory effect on RANKL-induced osteoclast differentiation in bone marrow macrophages cells, and also displayed the therapeutic potential on prednisolone-induced zebrafish osteoporosis. Transcriptome analysis and the following verification tests suggested that its anti-osteoporotic mechanism is related to the extracellular matrix receptor interaction-related pathways. This study provided a promising marine-derived anti-osteoporotic agent for the treatment of skeletal disease.


Assuntos
Osteoporose , Penicillium , Animais , Fungos/metabolismo , Macrófagos , NF-kappa B/metabolismo , Osteoporose/tratamento farmacológico , Penicillium/química , Peixe-Zebra/metabolismo , Compostos Bicíclicos com Pontes/química
2.
Biosens Bioelectron ; 97: 21-25, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28549266

RESUMO

It is desirable but challenging to assemble various biomimetic properties into a functional catalytic cascade system. In this work, cupric oxide nanoparticles were investigated as oxidase mimics for the aerobic oxidation of cysteine to cystine with the generation of hydrogen peroxide. Coupling this property with the peroxidase-like activity of CuO nanoparticles, we constructed a self-organized cascade reaction system based on a single-component nanozyme, which includes the oxidation of cysteine to yield cystine and hydrogen peroxide and the hydrogen peroxide-mediated oxidation of terephthalic acid to produce a fluorescence change. Based on this artificial enzymatic cascade reaction system, a fluorometric assay method with a low detection limit of 6.6nM was established for cysteine determination. This platform was then applied for the detection of cysteine in pharmaceutical products and human plasma, which yielded satisfactory results. Our investigations open up a new route and holds promise for the development and applications of multifunctional nanomaterials as enzyme mimics.


Assuntos
Materiais Biomiméticos/química , Técnicas Biossensoriais/métodos , Cobre/química , Cisteína/análise , Nanopartículas/química , Catálise , Cisteína Dioxigenase/química , Peróxido de Hidrogênio/química , Limite de Detecção , Oxirredução , Peroxidase/química , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA