Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569705

RESUMO

Brain tumors have been proved challenging to treat. Here we established a Multi-Target Neural Differentiation (MTND) therapeutic cocktail to achieve effective and safe treatment of brain malignancies by targeting the important hallmarks in brain cancers: poor cell differentiation and compromised cell cycle. In-vitro and in-vivo experiments confirmed the significant therapeutic effect of our MTND therapy. Significantly improved therapeutic effects over current first-line chemo-drugs have been identified in clinical cells, with great inhibition of the growth and migration of tumor cells. Further in-vivo experiments confirmed that sustained MTND treatment showed a 73% reduction of the tumor area. MTND also induced strong expression of phenotypes associated with cell cycle exit/arrest and rapid neural reprograming from clinical glioma cells to glutamatergic and GABAergic expressing cells, which are two key neuronal types involved in many human brain functions, including learning and memory. Collectively, MTND induced multi-targeted genotypic expression changes to achieve direct neural conversion of glioma cells and controlled the cell cycle/tumorigenesis development, helping control tumor cells' malignant proliferation and making it possible to treat brain malignant tumors effectively and safely. These encouraging results open avenues to developing new therapies for brain malignancies beyond cytotoxic agents, providing more effective medication recommendations with reduced toxicity.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Glioma/tratamento farmacológico , Glioma/metabolismo , Antineoplásicos/uso terapêutico , Diferenciação Celular
2.
Sci Adv ; 8(29): eabm5023, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867783

RESUMO

Brain tumors have been proved challenging to treat. Here, we present a promising alternative by developing an implantable ultrasound-powered tumor treating device (UP-TTD) that electromagnetically disrupts the rapid division of cancer cells without any adverse effects on normal neurons, thereby safely inhibiting brain cancer recurrence. In vitro and in vivo experiments confirmed the significant therapeutic effect of the UP-TTD, with ~58% inhibition on growth rate of clinical tumor cells and ~78% reduction of cancer area in tumor-bearing rats. This UP-TTD is wireless ultrasound-powered, chip-sized, lightweight, and easy to operate on complex surfaces, with a largely boosting therapeutic efficiency and reducing energy consumption. Meanwhile, various treatment parameters could be tuned from the UP-TTD without increasing its size or adding circuits on the integrated chip. The tuning process was simulated and discussed, showing an excellent agreement with the experimental data. The encouraging results of the UP-TTD raise the possibility of a new modality for brain cancer treatment.

3.
Nature ; 592(7852): 122-127, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636719

RESUMO

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Mutação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Brônquios/citologia , Brônquios/virologia , COVID-19/epidemiologia , Linhagem Celular , Células Cultivadas , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Aptidão Genética , Humanos , Masculino , Mesocricetus , Camundongos , Mucosa Nasal/citologia , Mucosa Nasal/virologia , Ligação Proteica , RNA Viral/análise , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
4.
Front Genet ; 12: 811043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082838

RESUMO

Identifying the phenotypes and interactions of various cells is the primary objective in cellular heterogeneity dissection. A key step of this methodology is to perform unsupervised clustering, which, however, often suffers challenges of the high level of noise, as well as redundant information. To overcome the limitations, we proposed self-diffusion on local scaling affinity (LSSD) to enhance cell similarities' metric learning for dissecting cellular heterogeneity. Local scaling infers the self-tuning of cell-to-cell distances that are used to construct cell affinity. Our approach implements the self-diffusion process by propagating the affinity matrices to further improve the cell similarities for the downstream clustering analysis. To demonstrate the effectiveness and usefulness, we applied LSSD on two simulated and four real scRNA-seq datasets. Comparing with other single-cell clustering methods, our approach demonstrates much better clustering performance, and cell types identified on colorectal tumors reveal strongly biological interpretability.

5.
Biofabrication ; 12(2): 025030, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32106097

RESUMO

Due to the increasing aging population and the high probability of sport injury among young people nowadays, it is of great demand to repair/regenerate diseased/defected osteochondral tissue. Given that osteochondral tissue mainly consists of a subchondral layer and a cartilage layer which are structurally heterogeneous and mechanically distinct, developing a biomimetic bi-phasic scaffold with excellent bonding strength to regenerate osteochondral tissue is highly desirable. Three-dimensional (3D) printing is advantageous in producing scaffolds with customized shape, designed structure/composition gradients and hence can be used to produce heterogeneous scaffolds for osteochondral tissue regeneration. In this study, bi-layered osteochondral scaffolds were developed through cryogenic 3D printing, in which osteogenic peptide/ß-tricalcium phosphate/poly(lactic-co-glycolic acid) water-in-oil composite emulsions were printed into hierarchically porous subchondral layer while poly(D,L-lactic acid-co-trimethylene carbonate) water-in-oil emulsions were printed into thermal-responsive cartilage frame on top of the subchondral layer. The cartilage frame was further filled/dispensed with transforming growth factor-ß1 loaded collagen I hydrogel to form the cartilage module. Although the continuously constructed osteochondral scaffolds had distinct microscopic morphologies and varied mechanical properties at the subchondral zone and cartilage zone at 37 °C, respectively, the two layers were closely bonded together, showing excellent shear strength and peeling strength. Rat bone marrow derived mesenchymal stem cells (rBMSCs) exhibited high viability and proliferation at both subchondral- and cartilage layer. Moreover, gradient rBMSC osteogenic/chondrogenic differentiation was obtained in the osteochondral scaffolds. This proof-of-concept study provides a facile way to produce integrated osteochondral scaffolds for concurrently directing rBMSC osteogenic/chondrogenic differentiation at different regions.


Assuntos
Peptídeos/metabolismo , Impressão Tridimensional , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/metabolismo , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fosfatos de Cálcio/química , Cartilagem/fisiologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Regeneração/efeitos dos fármacos , Fator de Crescimento Transformador beta1/química , Fator de Crescimento Transformador beta1/farmacologia
6.
Inorg Chem ; 57(5): 2917-2924, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29436828

RESUMO

Although different types of metal-based anticancer complexes have been synthesized, novel complexes to reduce the serious side effect of cisplatin and conquer cancer metastasis are still highly desired. Here, we report the synthesis, characterization, and biological activity of a novel heterodinuclear Pt(IV)-Ru(II) anticancer prodrug. The Pt(IV)-Ru(II) complex exhibits good stability in both water and PBS solution. Biological evaluation revealed that this bifunctional Pt(IV)-Ru(II) complex utilizes the advantages of two metal centers to have both cytotoxicity and antimetastatic property as designed. Although the complex has comparable cytotoxicities to cisplatin in tested cancer cell lines, this prodrug selectively kills cancer but not normal cells, and the IC50 values of the Pt(IV)-Ru(II) complex are 7-10 times higher than those of cisplatin toward normal cells. The cancer cell selectivity is further demonstrated by a cancer-normal cell coculture system. In addition, the antimetastatic properties of the heterodinuclear complex are assessed by using highly metastatic human breast cancer cells, and the results show that the migration and invasion of cancer cells are effectively restrained after the treatment. Moreover, the Pt(IV)-Ru(II) complex displays lower toxicity than cisplatin in developing zebrafish embryos. We, therefore, report an example of heterodinuclear Pt(IV)-Ru(II) complex not only to defeat both drug resistance and cancer metastasis but also having significantly improved cancer cell selectivity and reduced in vivo toxicity than cisplatin.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Platina/farmacologia , Pró-Fármacos/farmacologia , Rutênio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Platina/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Rutênio/química , Relação Estrutura-Atividade , Peixe-Zebra/embriologia
7.
J Food Sci ; 83(2): 284-293, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29355952

RESUMO

The effects of high hydrostatic pressure (HHP) treatments (200, 300, and 400 MPa for 1, 3, 5 and 10 min) on the shelling efficacy (the rate of shelling, the rate of integrity and yield of razor clam meat) and the physicochemical (drip loss, water-holding capacity, pH, conductivity, lipid oxidation, Ca2+ -ATPase activity, myofibrillar protein content), microbiological (total viable counts) and microstructural properties of fresh razor clam (Sinonovacula constricta) were investigated. HHP treatments significantly (P < 0.05) increased shelling efficiency, water-holding capacity, pH, conductivity, and lipid oxidation, and HHP-treated razor clam showed lower levels of microorganisms and drip loss than untreated razor clam. Levels of thiobarbituric acid reacting substances (TBA) in HHP-treated razor clam were greatly increased (up to 0.93 ± 0.09 mg MDA/kg at 400 MPa for 10 min) which was caused by the formation of hydroperoxides during HHP treatment. All HHP treatments were found to have adverse effects on the activity of Ca2+ -ATPase and the content of myofibrillar protein (MP), which might be due to the substantial damage to the tertiary structure of proteins at high pressure. Moreover, scanning electron microscopy (SEM) revealed the compaction of the muscle fibers and a decrease in the extracellular space with increasing pressure and holding time. This phenomenon was mainly correlated with the compaction of muscle fibers and denaturation, aggregation, and gelation of muscle protein triggered by high pressure. In general, HHP could be applied as a safe and effective nonthermal technology to produce high-quality shelled razor clam. PRACTICAL APPLICATION: High hydrostatic pressure (HHP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, it has not been widely applied to shell seafood due to its uncertain influence on its quality and shelling property. This study could provide valuable information regarding the shelling efficacy, physicochemical properties, and microstructure of razor clam treated by HHP. And it demonstrated that HHP showed a positive impact on quality of razor clam treated by HHP.


Assuntos
Bivalves/ultraestrutura , Manipulação de Alimentos , Alimentos Marinhos/análise , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Fenômenos Químicos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Pressão Hidrostática , Alimentos Marinhos/microbiologia
8.
ACS Nano ; 9(10): 9741-56, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26390118

RESUMO

Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. Herein, a self-monitored and self-delivered photosensitizer-doped FRET nanoparticle (NP) drug delivery system (DDS) is designed for this purpose. During preparation, a donor/acceptor pair of perylene and 5,10,15,20-tetro (4-pyridyl) porphyrin (H2TPyP) is co-doped into a chemotherapeutic anticancer drug curcumin (Cur) matrix. In the system, Cur works as a chemotherapeutic agent. In the meantime, the green fluorescence of Cur molecules is quenched (OFF) in the form of NPs and can be subsequently recovered (ON) upon release in tumor cells, which enables additional imaging and real-time self-monitoring capabilities. H2TPyP is employed as a photodynamic therapeutic drug, but it also emits efficient NIR fluorescence for diagnosis via FRET from perylene. By exploiting the emission characteristics of these two emitters, the combinatorial drugs provide a real-time dual-fluorescent imaging/tracking system in vitro and in vivo, and this has not been reported before in self-delivered DDS which simultaneously shows a high drug loading capacity (77.6%Cur). Overall, our carrier-free DDS is able to achieve chemotherapy (Cur), photodynamic therapy (H2TPyP), and real-time self-monitoring of the release and distribution of the nanomedicine (Cur and H2TPyP). More importantly, the as-prepared NPs show high cancer therapeutic efficiency both in vitro and in vivo. We expect that the present real-time self-monitored and self-delivered DDS with multiple-therapeutic and multiple-fluorescent ability will have broad applications in future cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Curcumina/farmacocinética , Curcumina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Humanos , Masculino , Camundongos Nus , Nanopartículas/ultraestrutura , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Nanomedicina Teranóstica , Peixe-Zebra
9.
Nature ; 526(7571): 122-5, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416728

RESUMO

Influenza A viruses pose a major public health threat by causing seasonal epidemics and sporadic pandemics. Their epidemiological success relies on airborne transmission from person to person; however, the viral properties governing airborne transmission of influenza A viruses are complex. Influenza A virus infection is mediated via binding of the viral haemagglutinin (HA) to terminally attached α2,3 or α2,6 sialic acids on cell surface glycoproteins. Human influenza A viruses preferentially bind α2,6-linked sialic acids whereas avian influenza A viruses bind α2,3-linked sialic acids on complex glycans on airway epithelial cells. Historically, influenza A viruses with preferential association with α2,3-linked sialic acids have not been transmitted efficiently by the airborne route in ferrets. Here we observe efficient airborne transmission of a 2009 pandemic H1N1 (H1N1pdm) virus (A/California/07/2009) engineered to preferentially bind α2,3-linked sialic acids. Airborne transmission was associated with rapid selection of virus with a change at a single HA site that conferred binding to long-chain α2,6-linked sialic acids, without loss of α2,3-linked sialic acid binding. The transmissible virus emerged in experimentally infected ferrets within 24 hours after infection and was remarkably enriched in the soft palate, where long-chain α2,6-linked sialic acids predominate on the nasopharyngeal surface. Notably, presence of long-chain α2,6-linked sialic acids is conserved in ferret, pig and human soft palate. Using a loss-of-function approach with this one virus, we demonstrate that the ferret soft palate, a tissue not normally sampled in animal models of influenza, rapidly selects for transmissible influenza A viruses with human receptor (α2,6-linked sialic acids) preference.


Assuntos
Adaptação Fisiológica , Vírus da Influenza A Subtipo H1N1/fisiologia , Palato Mole/metabolismo , Palato Mole/virologia , Receptores Virais/metabolismo , Seleção Genética , Adaptação Fisiológica/genética , Animais , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Furões/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Masculino , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Palato Mole/química , Sistema Respiratório/citologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Seleção Genética/genética , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Suínos/virologia
10.
Biomaterials ; 65: 76-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26142778

RESUMO

The capability to remotely control the release of biomolecules provides an unique opportunity to monitor and regulate neural signaling, which spans extraordinary spatial and temporal scales. While various strategies, including local perfusion, molecular "uncaging", or photosensitive polymeric materials, have been applied to achieve controlled releasing of neuro-active substances, it is still challenging to adopt these technologies in many experimental contexts that require a straightforward but versatile loading-releasing mechanism. Here, we develop a synthetic strategy for remotely controllable releasing of neuro-modulating molecules. This platform is based on microscale composite hydrogels that incorporate polypyrrole (PPy) nanoparticles as photo-thermal transducers and is triggered by near-infrared-light (NIR) irradiation. Specifically, we first demonstrate the utility of our technology by recapitulating the "turning assay" and "collapse assay", which involve localized treatment of chemotactic factors (e.g. Netrin or Semaphorin 3A) to subcellular neural elements and have been extensively used in studying axonal pathfinding. On a network scale, the photo-sensitive microgels are also validated for light-controlled releasing of neurotransmitters (e.g. glutamate). A single NIR-triggered release is sufficient to change the dynamics of a cultured hippocampal neuron network. Taking the advantage of NIR's capability to penetrate deep into live tissue, this technology is further shown to work similarly well in vivo, which is evidenced by synchronized spiking activity in response to NIR-triggered delivery of glutamate in rat auditory cortex, demonstrating remote control of brain activity without any genetic modifications. Notably, our nano-composite microgels are capable of delivering various molecules, ranging from small chemicals to large proteins, without involving any crosslinking chemistry. Such great versatility and ease-of-use will likely make our optically-controlled delivery technology a general and important tool in cell biology research.


Assuntos
Preparações de Ação Retardada/química , Hidrogéis/química , Nanopartículas/química , Neurônios/efeitos dos fármacos , Neurotransmissores/administração & dosagem , Polímeros/química , Pirróis/química , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos/instrumentação , Raios Infravermelhos , Nanopartículas/ultraestrutura , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
11.
Lab Chip ; 15(3): 680-9, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25406521

RESUMO

The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.


Assuntos
Comportamento Animal/efeitos dos fármacos , Mapeamento Encefálico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas , Vigília/fisiologia , Animais , Comportamento Animal/fisiologia , Larva , Neurotoxinas/farmacologia , Peptídeos/farmacologia , Peixe-Zebra
12.
AIDS Res Hum Retroviruses ; 25(12): 1231-41, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20001317

RESUMO

The high rate of HIV-1 mutation and the frequent sexual transmission highlight the need for novel therapeutic modalities with broad activity against both CXCR4 (X4) and CCR5 (R5)-tropic viruses. We investigated a large number of natural products, and from Sargassum fusiforme we isolated and identified palmitic acid (PA) as a natural small bioactive molecule with activity against HIV-1 infection. Treatment with 100 microM PA inhibited both X4 and R5 independent infection in the T cell line up to 70%. Treatment with 22 microM PA inhibited X4 infection in primary peripheral blood lymphocytes (PBL) up to 95% and 100 microM PA inhibited R5 infection in primary macrophages by over 90%. Inhibition of infection was concentration dependent, and cell viability for all treatments tested remained above 80%, similar to treatment with 10(-6)M nucleoside analogue 2', 3'-dideoxycytidine (ddC). Micromolar PA concentrations also inhibited cell-to-cell fusion and specific virus-to-cell fusion up to 62%. PA treatment did not result in internalization of the cell surface CD4 receptor or lipid raft disruption, and it did not inhibit intracellular virus replication. PA directly inhibited gp120-CD4 complex formation in a dose-dependent manner. We used fluorescence spectroscopy to determine that PA binds to the CD4 receptor with K(d) approximately 1.5 +/- 0.2 microM, and we used one-dimensional saturation transfer difference NMR (STD-NMR) to determined that the PA binding epitope for CD4 consists of the hydrophobic methyl and methelene groups located away from the PA carboxyl terminal, which blocks efficient gp120-CD4 attachment. These findings introduce a novel class of antiviral compound that binds directly to the CD4 receptor, blocking HIV-1 entry and infection. Understanding the structure-affinity relationship (SAR) between PA and CD4 should lead to the development of PA analogs with greater potency against HIV-1 entry.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/metabolismo , HIV-1/efeitos dos fármacos , Ácido Palmítico/farmacologia , Antígenos CD4/efeitos dos fármacos , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Fusão Celular , Linhagem Celular , Células Cultivadas , Inibidores Enzimáticos/química , Inibidores da Fusão de HIV/química , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Ácido Palmítico/química , Receptores CCR5/efeitos dos fármacos , Receptores CCR5/metabolismo , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/metabolismo , Sargassum/química , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA