Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2405673, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022876

RESUMO

Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.

2.
ACS Nano ; 17(17): 17217-17232, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37584451

RESUMO

Macrophage-mediated cellular phagocytosis (MMCP) plays a critical role in conducting antitumor immunotherapy but is usually impaired by the intrinsic phagocytosis evading ability of tumor cells and the immunosuppressive tumor microenvironment (TME). Herein, a MMCP-boosting hydrogel (TCCaGM) was elaborately engineered by encapsulating granulocyte-macrophage colony-stimulating factor (GM-CSF) and a therapeutic nanoplatform (TCCaN) that preloaded with the tunicamycin (Tuni) and catalase (CAT) with the assistance of CaCO3 nanoparticles (NPs). Strikingly, the hypoxic/acidic TME was efficiently alleviated by the engineered hydrogel, "eat me" signal calreticulin (CRT) was upregulated, while the "don't eat me" signal CD47 was downregulated on tumor cells, and the infiltrated DCs were recruited and activated, all of which contributed to boosting the macrophage-mediated phagocytosis and initiating tumor-specific CD8+ T cells responses. Meanwhile, the remodeled TME was beneficial to accelerate the polarization of tumor-associated macrophages (TAMs) to the antitumoral M1-like phenotype, further heightening tumoricidal immunity. With the combination of PD-1 antibody (αPD-1), the designed hydrogel significantly heightened systemic antitumor immune responses and long-term immunological effects to control the development of primary and distant tumors as well as suppress tumor metastasis and recurrence, which established an optimal strategy for high-performance antitumor immunotherapy.


Assuntos
Adjuvantes Imunológicos , Neoplasias , Humanos , Adjuvantes Imunológicos/farmacologia , Microambiente Tumoral , Linfócitos T CD8-Positivos , Hidrogéis/farmacologia , Macrófagos , Neoplasias/terapia , Neoplasias/patologia , Fagocitose , Antígeno CD47 , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA