Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115279, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544281

RESUMO

Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease that has no viable treatment. Curcumin (Cur) and resveratrol (Res) are two natural products that have been studied for their potential to ameliorate MAFLD. However, while these compounds have been investigated individually, their combined use and the potential for a synergistic or augmented effect remain unexplored. This study aims to investigate the effect of curcumin (Cur) and resveratrol (Res) as a potential combination therapy on MAFLD. Cur, Res and Cur+Res were tested in palmitic acid (PA)-induced-HepG2 cells. MAFLD model was established using Goto-Kakizaki rats. The animals were treated with vehicle control (model group), Cur (150 mg/kg), Res (150 mg/kg), Cur+Res (150 mg/kg, 8:2, w/w), or metformin (Met, positive control, 400 mg/kg/day) via oral gavage for 4 weeks. Wistar rats were used as the control group. Network pharmacology was conducted to elucidate the molecular actions of Cur and Res, followed by q-PCR and immunoblotting in vivo. Cur+Res exhibited synergistic effects in reducing triglyceride, total cholesterol and lipid accumulation in PA-induced HepG2 cells. The combination also markedly attenuated hepatic steatosis in the MAFLD rats. Network pharmacology illustrated that the interaction of Cur and Res was associated with the modulation of multiple molecular targets associated with the PI3K/AKT/mTOR and HIF-1 signaling pathways. Experimental results confirmed that Cur+Res nomalised the gene targets and protein expressions in the PI3K/AKT/mTOR and HIF-1 signaling pathways, including PI3K, mTOR, STAT-3, HIF-1α, and VEGF. The present study demonstrated an advanced effect of Cur and Res in combination to attenuate MAFLD, and the mechanism is at least partly associated with the modulation of the PI3K/AKT/mTOR and HIF-1 signaling pathways.


Assuntos
Curcumina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo
2.
Plant Biotechnol J ; 21(4): 839-853, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597709

RESUMO

Phased, small interfering RNAs (phasiRNAs) are important for plant anther development, especially for male sterility. PhasiRNA biogenesis is dependent on genes like RNA polymerase 6 (RDR6), DICER-LIKE 4 (DCL4), or DCL5 to produce 21- or 24 nucleotide (nt) double-strand small RNAs. Here, we generated mutants of DCL4, DCL5 and RDR6 using CRISPR/Cas9 system and studied their effects on plant reproductive development and phasiRNA production in wheat. We found that RDR6 mutation caused sever consequence throughout plant development starting from seed germination and the dcl4 mutants grew weaker with thorough male sterility, while dcl5 plants developed normally but exhibited male sterility. Correspondingly, DCL4 and DCL5, respectively, specified 21- and 24-nt phasiRNA biogenesis, while RDR6 contributed to both. Also, the three key genes evolved differently in wheat, with TaDCL5-A/B becoming non-functioning and TaRDR6-A being lost after polyploidization. Furthermore, we found that PHAS genes (phasiRNA precursors) identified via phasiRNAs diverged rapidly among sub-genomes of polyploid wheat. Despite no similarity being found among phasiRNAs of grasses, their targets were enriched for similar biological functions. In light of the important roles of phasiRNA pathways in gametophyte development, genetic dissection of the function of key genes may help generate male sterile lines suitable for hybrid wheat breeding.


Assuntos
Infertilidade Masculina , Triticum , Masculino , Humanos , Triticum/genética , Triticum/metabolismo , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/genética , Mutagênese/genética , Plantas/genética , Infertilidade Masculina/genética , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas
3.
Front Pharmacol ; 13: 890444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899118

RESUMO

Diabetes-induced cognitive impairment (DCI) presents a major public health risk among the aging population. Previous clinical attempts on known therapeutic targets for DCI, such as depleted insulin secretion, insulin resistance, and hyperglycaemia have delivered poor patient outcomes. However, recent evidence has demonstrated that the gut microbiome plays an important role in DCI by modulating cognitive function through the gut-brain crosstalk. The bioactive compound tanshinone IIA (TAN) has shown to improve cognitive and memory function in diabetes mellitus models, though the pharmacological actions are not fully understood. This study aims to investigate the effect and underlying mechanism of TAN in attenuating DCI in relation to regulating the gut microbiome. Metagenomic sequencing analyses were performed on a group of control rats, rats with diabetes induced by a high-fat/high-glucose diet (HFD) and streptozotocin (STZ) (model group) and TAN-treated diabetic rats (TAN group). Cognitive and memory function were assessed by the Morris water maze test, histopathological assessment of brain tissues, and immunoblotting of neurological biomarkers. The fasting blood glucose (FBG) level was monitored throughout the experiments. The levels of serum lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunoassays to reflect the circulatory inflammation level. The morphology of the colon barrier was observed by histopathological staining. Our study confirmed that TAN reduced the FBG level and improved the cognitive and memory function against HFD- and STZ-induced diabetes. TAN protected the endothelial tight junction in the hippocampus and colon, regulated neuronal biomarkers, and lowered the serum levels of LPS and TNF-α. TAN corrected the reduced abundance of Bacteroidetes in diabetic rats. At the species level, TAN regulated the abundance of B. dorei, Lachnoclostridium sp. YL32 and Clostridiodes difficile. TAN modulated the lipid metabolism and biosynthesis of fatty acids in related pathways as the main functional components. TAN significantly restored the reduced levels of isobutyric acid and butyric acid. Our results supported the use of TAN as a promising therapeutic agent for DCI, in which the underlying mechanism may be associated with gut microbiome regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA