Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Aging (Albany NY) ; 16(4): 3973-3988, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38385979

RESUMO

BACKGROUND: Testicular cancer is fairly rare but can affect fertility in adult males. Leucine-rich repeats- and WD repeat domain-containing protein 1 (LRWD1) is a sperm-specific marker that mainly affects sperm motility in reproduction. Our previous study demonstrated the impact of LRWD1 on testicular cancer development; however, the underlying mechanisms remain unclear. METHODS: In this study, various plasmids associated with LRWD1 and miR-320a manipulation were used to explore the roles and regulatory effects of these molecules in NT2D1 cellular processes. A Dual-Glo luciferin-luciferase system was used to investigate LRWD1 transcriptional activity, and qRT-PCR and western blotting were used to determine gene and protein expression. RESULTS: The results suggested that miR-320a positively regulated LRWD1 and positively correlated with NT2D1 cell proliferation but negatively correlated with cell migration and invasion ability. In addition, the miRNA-ribonucleoprotein complex AGO2/FXR1 was shown to be essential in the mechanism by which miR-320a regulates LRWD1 mRNA expression. As miR-320a was required to regulate LRWD1 expression through the AGO2 and FXR1 complex, eEF2 and eLF4E were also found to be involved in miR-320a increasing LRWD1 expression. Furthermore, miR-320a and LRWD1 were responsive to oxidative stress, and NRF2 was affected by the presence of miR-320a in response to ROS stimulation. CONCLUSIONS: This is the first study showing the role of miR-320a in upregulating the testicular cancer-specific regulator LRWD1 and the importance of the AGO2/FXR1 complex in miR-320a-mediated upregulation of LRWD1 during testicular cancer progression.


Assuntos
Carcinoma , MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sêmen , Motilidade dos Espermatozoides , Neoplasias Testiculares/genética , Fatores de Transcrição/metabolismo
2.
Arch Immunol Ther Exp (Warsz) ; 71(1): 21, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37638991

RESUMO

Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-ß-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs. Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.


Assuntos
Hiperglicemia , Proteína Supressora de Tumor p53 , Adulto , Humanos , Espécies Reativas de Oxigênio , Estresse Oxidativo , Autofagia , Células Epiteliais , Pigmentos da Retina
3.
Viruses ; 15(1)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36680293

RESUMO

The real-world benefits of direct-acting antiviral (DAA)-induced sustained virologic response (SVR) on the de novo occurrence and progression of esophageal varices (EV) remain unclear in patients with hepatitis C virus (HCV)-related liver cirrhosis (LC). This is a retrospective cohort study evaluating all patients with Child-Pugh class A HCV-related LC during 2013 to 2020 in the Chang Gung Medical System. A total of 215 patients fit the inclusion criteria and were enrolled. Of them, 132 (61.4%) patients achieved DAA induced-SVR and 83 (38.6%) did not receive anti-viral treatment. During a median follow-up of 18.4 (interquartile range, 10.1−30.9) months, the 2-year incidence of de novo EV occurrence was 8 (7.0%) in the SVR group and 7 (12.7%) in the treatment-naïve group. Compared to the treatment-naïve group, the SVR group was associated with a significantly lower incidence of EV occurrence (adjusted hazard ratio [aHR]: 0.47, p = 0.030) and a significantly lower incidence of EV progression (aHR: 0.55, p = 0.033). The risk of EV progression was strongly correlated with the presence of baseline EV (p < 0.001). To the best of our knowledge, this is the first study to demonstrate that DAA-induced SVR is associated with decreased risk of de novo EV occurrence and progression in the real world.


Assuntos
Carcinoma Hepatocelular , Varizes Esofágicas e Gástricas , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Humanos , Antivirais/uso terapêutico , Hepacivirus , Varizes Esofágicas e Gástricas/epidemiologia , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/prevenção & controle , Estudos Retrospectivos , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Hepatite C/epidemiologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico
4.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562942

RESUMO

Increasing evidence has shown P2Y12 inhibitor monotherapy is a feasible alternative treatment for patients after percutaneous coronary intervention (PCI) with stent implantation in the modern era. However, patients with diabetes mellitus (DM) have a higher risk of ischemic events and more complex coronary artery disease. The purpose of this study is to evaluate the efficacy and safety of this novel approach among patients with DM and those without DM. We conducted a systematic review and meta-analysis of randomized controlled trials that compared P2Y12 inhibitor monotherapy with 12 months of dual antiplatelet therapy (DAPT) in patients who underwent PCI with stent implantation. PubMed, Embase, Cochrane library database, ClinicalTrials.gov, and three other websites were searched for our data from the earliest report to January 2022. The primary efficacy outcome was major adverse cardiovascular and cerebrovascular events (MACCE): a composite of all-cause mortality, myocardial infarction, stent thrombosis, and stroke. The primary safety outcome was major or minor bleeding events. The secondary endpoint was net adverse clinical events (NACE) which are defined as a composite of major bleeding and adverse cardiac and cerebrovascular events. A total of four randomized controlled trials with 29,136 patients were included in our meta-analysis. The quantitative analysis showed a significant reduction in major or minor bleeding events in patients treated with P2Y12 inhibitor monotherapy compared to standard DAPT (OR: 0.68, 95% CI: 0.46-0.99, p = 0.04) without increasing the risk of MACCE (OR: 0.96, 95% CI: 0.85-1.09, p = 0.50). The number of NACE was significantly lower in the patients treated with P2Y12 inhibitor monotherapy (OR: 0.84, 95% CI: 0.72-0.97, p = 0.019). In DM patients, P2Y12 inhibitor monotherapy was associated with a lower risk of MACCE compared to standard DAPT (OR: 0.85, 95% CI: 0.74-0.98, p = 0.02). Furthermore, P2Y12 inhibitor monotherapy was accompanied by a favorable reduction in major or minor bleeding events (OR: 0.80, 95% CI: 0.64-1.05, p = 0.107). In non-DM patients, P2Y12 inhibitor monotherapy showed a significant reduction in major or minor bleeding events (OR: 0.58, 95% CI: 0.38-0.88, p = 0.01), but without increasing the risk of MACCE (OR: 0.99, 95% CI: 0.82-1.19, p = 0.89). Based on these findings, P2Y12 inhibitor monotherapy could significantly decrease bleeding events without increasing the risk of stent thrombosis or myocardial infarction in the general population. The benefit of reducing bleeding events was much more significant in non-DM patients than in DM patients. Surprisingly, P2Y12 inhibitor monotherapy could lower the risk of MACCE in DM patients. Our study supports that P2Y12 inhibitor monotherapy is a promising alternative choice of medical treatment for patients with DM undergoing PCI with stent implantation in the modern era.


Assuntos
Diabetes Mellitus , Infarto do Miocárdio , Intervenção Coronária Percutânea , Trombose , Diabetes Mellitus/etiologia , Quimioterapia Combinada , Hemorragia/tratamento farmacológico , Hemorragia/etiologia , Humanos , Infarto do Miocárdio/tratamento farmacológico , Intervenção Coronária Percutânea/efeitos adversos , Inibidores da Agregação Plaquetária/efeitos adversos , Antagonistas do Receptor Purinérgico P2Y/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Trombose/etiologia , Resultado do Tratamento
5.
Front Cardiovasc Med ; 9: 1015471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588577

RESUMO

Background: Tumor endothelial marker 1 (TEM1/CD248) is a transmembrane protein that expresses in mesenchymal lineage derived cells during embryogenesis and becomes undetectable in normal adults after birth. Re-expression of TEM1 is found in organ fibrosis, wound healing and cardiac remodeling indicating its potential role in heart failure (HF). The purpose of this study is to explore the role of soluble TEM1 (sTEM1) in patients with HF with reduced ejection fraction. Methods: We examined endomyocardial biopsy specimens from three HF patients and blood samples from 48 patients admitted for acute decompensated HF (age 72 years, men 61.7%). The expression of TEM1 in cardiac tissue and concentrations of sTEM1 in plasma were evaluated. Cultured rat cardiomyocytes (H9c2) and human cardiac fibroblasts (HCF) were stimulated with hypoxia or transforming growth factor beta (TGF-ß) to observe the release of sTEM1 into culture media. The conditioned media of hypoxia-stimulated H9c2 cells was harvested and added into cultured cardiac fibroblast to evaluate its biological effect. Results: Immunofluorescence study of biopsy specimens from three HF patients showed TEM1 expression in cardiomyocytes and cardiac fibroblasts. The plasma level of sTEM1 was significantly higher in patients (0.90 ± 0.23 vs. 0.33 ± 0.10 ng/mL, p = 0.032) with LVEF ≤ 35% compared with those with LVEF 36-49%. The sTEM1 levels had correlations with HF biomarkers of cardiac fibrosis, including growth differentiation factor-15 (GDF-15) and galectin-3. There was a significant increase in sTEM1 levels in the cultured media of H9c2 and HCF after being stressed with hypoxia or TGF-ß. The conditioned media derived from hypoxia-stimulated H9c2 cells significantly increased cell proliferation of cardiac fibroblasts. This effect was partially reversed by anti-TEM1 antibody. Conclusion: This pilot study demonstrated that cardiac TEM1 expression was upregulated in HF. The levels of sTEM1 were significantly higher in HF patients with LVEF ≤ 35% and correlated with other biomarkers of cardiac fibrosis. In vitro study proved that functional sTEM1 was released into cultured media after stressing cardiomyocytes and HCF.

6.
Biomolecules ; 11(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34827581

RESUMO

Vertical vibration (VV) is a type of whole body vibration, which induces muscle contraction through vibration to improve muscle strength and bone density. However, the mechanism of VV on muscle cell myotube formation is still unclear. In the current study, we aim to clarify the mechanism involved in VV's stimulation of myotube formation. In order to identify the molecules regulated by VV, we performed proteomics analysis including 2D electrophoresis combined with MALDI-TOF/TOF Mass. Stathmin was identified as a high potential molecule responding to VV stimulation, and we found that under VV stimulation, the expression of stathmin gene and protein increased in a time-dependent manner. In addition, we also confirmed that the increase of stathmin stimulated by VV is mediated through the PI3K/Akt pathway. Furthermore, stathmin siRNA significantly down-regulated the expression of myogenic regulatory factor (MRF) MyoD, decorin, and type I collagen (Col-I), and down-regulated the cellular process regulators such as FGF7, TGFBr1 and PAK3. Taken together, our results confirm that under the stimulation of VV, PI3K/Akt and stathmin would be activated, as well as the up-regulation of MRFs, such as FGF7, TGFBr1 and PAK3 to initiate myogenesis. It also showed that the response of MRF to VV stimulation was significantly related to stathmin expression, which also confirmed the importance of stathmin in the entire myotube formation process. This study may provide evidence of stathmin as a biological indicator of VV to increase muscle strength.


Assuntos
Vibração , Fibras Musculares Esqueléticas , Mioblastos , Fosfatidilinositol 3-Quinases , Estatmina
7.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502359

RESUMO

Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/efeitos dos fármacos , Glicemia/metabolismo , Morte Celular/fisiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/fisiopatologia , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Terapia de Imunossupressão/métodos , Insulina/metabolismo , Resistência à Insulina , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
8.
Theranostics ; 11(18): 8813-8835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522213

RESUMO

In recent decades, chemotherapies targeting apoptosis have emerged and demonstrated remarkable achievements. However, emerging evidence has shown that chemoresistance is mediated by impairing or bypassing apoptotic cell death. Several novel types of programmed cell death, such as ferroptosis, necroptosis, and pyroptosis, have recently been reported to play significant roles in the modulation of cancer progression and are considered a promising strategy for cancer treatment. Thus, the switch between apoptosis and pyroptosis is also discussed. Cancer immunotherapy has gained increasing attention due to breakthroughs in immune checkpoint inhibitors; moreover, ferroptosis, necroptosis, and pyroptosis are highly correlated with the modulation of immunity in the tumor microenvironment. Compared with necroptosis and ferroptosis, pyroptosis is the primary mechanism for host defense and is crucial for bridging innate and adaptive immunity. Furthermore, recent evidence has demonstrated that pyroptosis exerts benefits on cancer immunotherapies, including immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell therapy (CAR-T). Hence, in this review, we elucidate the role of pyroptosis in cancer progression and the modulation of immunity. We also summarize the potential small molecules and nanomaterials that target pyroptotic cell death mechanisms and their therapeutic effects on cancer.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Piroptose/imunologia , Animais , Apoptose/fisiologia , Autofagia/imunologia , Ferroptose/imunologia , Humanos , Inflamassomos/imunologia , Inflamação/metabolismo , Necroptose/imunologia , Neoplasias/terapia , Piroptose/fisiologia , Microambiente Tumoral/imunologia
9.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003599

RESUMO

Discoidin domain receptor 1 (Drd1) is a collagen-binding membrane protein, but its role in osteoblasts during osteogenesis remains undefined. We generated inducible osteoblast-specific Ddr1 knockout (OKOΔDdr1) mice; their stature at birth, body weight and body length were significantly decreased compared with those of control Ddr1f/f-4OHT mice. We hypothesize that Ddr1 regulates osteogenesis of osteoblasts. Micro-CT showed that compared to 4-week-old Ddr1f/f-4OHT mice, OKOΔDdr1 mice presented significant decreases in cancellous bone volume and trabecular number and significant increases in trabecular separation. The cortical bone volume was decreased in OKOΔDdr1 mice, resulting in decreased mechanical properties of femurs compared with those of Ddr1f/f-4OHT mice. In femurs of 4-week-old OKOΔDdr1 mice, H&E staining showed fewer osteocytes and decreased cortical bone thickness than Ddr1f/f-4OHT. Osteoblast differentiation markers, including BMP2, Runx2, alkaline phosphatase (ALP), Col-I and OC, were decreased compared with those of control mice. Ddr1 knockdown in osteoblasts resulted in decreased mineralization, ALP activity, phosphorylated p38 and protein levels of BMP2, Runx2, ALP, Col-I and OC during osteogenesis. Overexpression and knockdown of Ddr1 in osteoblasts demonstrated that DDR1 mediates the expression and activity of Runx2 and the downstream osteogenesis markers during osteogenesis through regulation of p38 phosphorylation.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese/genética , Receptores de Dopamina D1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fosfatase Alcalina/genética , Animais , Proteína Morfogenética Óssea 2/genética , Colágeno/genética , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Fosforilação/genética
10.
Int J Mol Sci ; 21(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635662

RESUMO

Mesenchymal stem cells (MSCs) have two characteristics of interest for this paper: the ability to self-renew, and the potential for multiple-lineage differentiation into various cells. MSCs have been used in cardiac tissue regeneration for over a decade. Adult cardiac tissue regeneration ability is quite low; it cannot repair itself after injury, as the heart cells are replaced by fibroblasts and lose function. It is therefore important to search for a feasible way to repair and restore heart function through stem cell therapy. Stem cells can differentiate and provide a source of progenitor cells for cardiomyocytes, endothelial cells, and supporting cells. Studies have shown that the concentrations of blood lipids and lipoproteins affect cardiovascular diseases, such as atherosclerosis, hypertension, and obesity. Furthermore, the MSC lipid profiles, such as the triglyceride and cholesterol content, have been revealed by lipidomics, as well as their correlation with MSC differentiation. Abnormal blood lipids can cause serious damage to internal organs, especially heart tissue. In the past decade, the accumulated literature has indicated that lipids/lipoproteins affect stem cell behavior and biological functions, including their multiple lineage capability, and in turn affect the outcome of regenerative medicine. This review will focus on the effect of lipids/lipoproteins on MSC cardiac regenerative medicine, as well as the effect of lipid-lowering drugs in promoting cardiomyogenesis-associated MSC differentiation.


Assuntos
Diferenciação Celular , Regeneração Tecidual Guiada , Coração/fisiologia , Lipídeos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Humanos , Hipolipemiantes , Medicina Regenerativa
11.
Int J Mol Sci ; 20(17)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480728

RESUMO

Ceramide is a sphingolipid which regulates a variety of signaling pathways in eukaryotic cells. Exogenous ceramide has been shown to induce cellular apoptosis. In this study, we observed that exogenous ceramide induced two distinct morphologies of cell fate following C2-ceramide treatment between the two breast cancer cell lines MCF-7 (wild type p53) and MDA-MB-231 (mutant p53) cells. The growth assessment showed that C2-ceramide caused significant growth inhibition and apoptosis in MDA-MB-231 cells through down-regulating the expression of mutant p53 whereas up-regulating the expression of pro-apoptotic Bad, and the proteolytic activation of caspase-3. However, senescence-associated (SA)-ß-galactosidase (ß-gal) was regulated in MCF-7 cells after C2-ceramide treatment. The results of proliferation and apoptosis assays showed that MCF-7 cells were more resistant to C2-ceramide treatment compared to MDA-MB-231 cells. Furthermore, C2-ceramide treatment induced a time-responsive increase in Rb protein, a key regulator of senescence accompanied with the upregulation of both mRNA level and protein level of SA-genes PAI-1 and TGaseII in MCF-7 but not in MDA-MB-231 cells, suggesting that some cancer cells escape apoptosis through modulating senescence-like phenotype. The results of our present study depicted the mechanism of C2-ceramide-resistant breast cancer cells, which might benefit the strategic development of ceramide-based chemotherapeutics against cancer in the future.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Senescência Celular/efeitos dos fármacos , Ceramidas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ceramidas/química , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Fenótipo
12.
Cancers (Basel) ; 11(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884764

RESUMO

Non-small cell lung cancer (NSCLC) is a type of malignant cancer, and 85% of metastatic NSCLC patients have a poor prognosis. C2-ceramide induces G2/M phase arrest and cytotoxicity in NSCLC cells. In this study, the autophagy-inducing effect of C2-ceramide was demonstrated, and cotreatment with the autophagy inhibitor chloroquine (CQ) was investigated in NSCLC H460 and H1299 cells. The results suggested that C2-ceramide exhibited dose-dependent anticancer effects in H460 and H1299 cells and autophagy induction. Zebrafish-based acridine orange staining confirmed the combined effects in vivo. Importantly, the combination of a sublethal dose of C2-ceramide and CQ resulted in additive cytotoxicity and autophagy in both cell lines. Alterations of related signaling factors, including Src and SIRT1 inhibition and activation of the autophagic regulators LAMP2 and LC3-I/II, contributed to the autophagy-dependent apoptosis. We found that C2-ceramide continuously initiated autophagy; however, CQ inhibited autophagosome maturation and degradation during autophagy progression. Accumulated and non-degraded autophagosomes increased NSCLC cell stress, eventually leading to cell death. This study sheds light on improvements to NSCLC chemotherapy to reduce the chemotherapy dose and NSCLC patient burden.

13.
Sci Rep ; 9(1): 2552, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796242

RESUMO

Characterized with a high recurrence rate and low detection rate, prevention is the best approach to reduce mortality in hepatocellular carcinoma (HCC). The overexpression of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 2 (PREX2) is observed in various tumors, including HCC; and the frequent PREX2 mutations in melanoma are associated with invasiveness. We sought to identify somatic mutations and the functional changes in mutational signatures of PREX2. Genomic DNA sequencing was performed in 68 HCC samples with three types of hepatitis viral infection status: HBs Ag-positive, anti-HCV Ab-positive, and negative for any hepatitis B or C markers. Stabilities and interactions of proteins as well as cell proliferation and migration were evaluated. Fourteen non-silent point mutations in PREX2 were detected, with 16 of 68 HCC patients harboring at least one non-silent mutation. All mutant forms of PREX2, except for K400f, had an extended half-life compared with wild-type PREX2. Moreover, only the half-life of S1113R was twice that of the wild-type. PREX2 mutant-S1113R also promoted migration and activated the AKT pathway as well as impaired HectH9-mediated ubiquitination. Our study identified a gain-of-function mutation of PREX2 - S1113R in HCC. Such mutation enhanced PREX2 protein stability, promoted cell proliferation, and was associated with aggressiveness of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Neoplasias Hepáticas/genética , Mutação , Adulto , Idoso , Proliferação de Células , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vírus de Hepatite , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
14.
Int J Mol Sci ; 18(11)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140298

RESUMO

The natural pure compound obtusilactone A (OA) was identified in Cinnamomum kotoense Kanehira & Sasaki, and shows effective anti-cancer activity. We studied the effect of OA on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). OA possesses biocompatibility, stimulates Alkaline Phosphatase (ALP) activity and facilitates mineralization of BMSCs. Expression of osteogenesis markers BMP2, Runx2, Collagen I, and Osteocalcin was enhanced in OA-treated BMSCs. An in vivo rat model with local administration of OA via needle implantation to bone marrow-residing BMSCs revealed that OA increased the new bone formation and trabecular bone volume in tibias. Micro-CT images and H&E staining showed more trabecular bone at the needle-implanted site in the OA group than the normal saline group. Thus, OA confers an osteoinductive effect on BMSCs via induction of osteogenic marker gene expression, such as BMP2 and Runx2 expression and subsequently elevates ALP activity and mineralization, followed by enhanced trabecular bone formation in rat tibias. Therefore, OA is a potential osteoinductive drug to stimulate new bone formation by BMSCs.


Assuntos
Células da Medula Óssea/citologia , Lignanas/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Cinnamomum/química , Regulação da Expressão Gênica/efeitos dos fármacos , Imageamento Tridimensional , Lignanas/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Osseointegração/efeitos dos fármacos , Osseointegração/genética , Osteogênese/genética , Ratos Sprague-Dawley , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento , Microtomografia por Raio-X
15.
Proc Natl Acad Sci U S A ; 114(38): E8035-E8044, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28878021

RESUMO

Casein kinase 1α (CK1α), a component of the ß-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14-Cre-ERT2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by ß-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14-Cre-ERT2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte-stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn.


Assuntos
Caseína Quinase I/metabolismo , Queratinócitos/metabolismo , Pigmentação da Pele , Queimadura Solar/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Caseína Quinase I/antagonistas & inibidores , Caseína Quinase I/genética , Epiderme/metabolismo , Epiderme/patologia , Queratinócitos/patologia , Melaninas/biossíntese , Melaninas/genética , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos , Camundongos Knockout , Queimadura Solar/genética , Queimadura Solar/patologia , Proteína Supressora de Tumor p53/genética , beta Catenina/genética , beta Catenina/metabolismo
16.
J Dermatol Sci ; 75(2): 100-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24815018

RESUMO

BACKGROUND: Wnt3a and Frizzled-3 are both expressed in the dorsal neural tube that gives rise to the neural crest in Xenopus, zebrafish and mice. Melanocytes originate from the neural crest (NC) and postnatally, melanocyte stem cells reside in the hair follicle bulge and in the dermis. However, the roles of Wnt3a and Frizzled-3 in melanocyte development have not been clarified. OBJECTIVE: The aim of this study was to delineate the expression of Frizzled-3 in murine melanocyte lineage and human melanocytes, and to study the effects of Wnt3a on melanocyte development at various stages. METHODS: Murine NC explant cultures and three NC-derived melanocyte lineage cell lines, including NCCmelb4M5 (Kit(-) melanocyte precursors), NCCmelb4 (Kit(+) melanoblasts) and NCCmelan5 (differentiated melanocytes), and human epidermal melanocytes were treated with pure recombinant Wnt3a protein and their cell behaviors were analyzed including their proliferation, Kit expression, tyrosinase (Tyr) activity, melanin production, dendrite formation and migration. RESULTS: Frizzled-3 was expressed in Tyr-related protein (TRP)-1(+) cells in NC explant cultures, in all 3 melanocyte precursor cell lines and in human melanocytes. Wnt3a increased the population of TRP-1(+) cells, the number of L-3,4-dihydroxyphenylalanine (DOPA)(+) cells and dendrite formation in NC explant cultures. Wnt3a stimulated the proliferation of all 3 melanocyte precursor cell lines in a dose-dependent manner and also stimulated human melanocyte proliferation. Moreover, Wnt3a increased Tyr activity and melanin content of differentiated melanocytes, but did not activate Tyr activity in melanoblasts. Wnt3a stimulated dendrite formation in differentiated melanocytes, but not in melanoblasts. Wnt3a did not affect melanoblast or melanocyte migration. Wnt3a did not induce c-Kit expression in Kit(-) NCCmelb4M5 cells and did not affect c-Kit expression in any cell line tested. CONCLUSIONS: Frizzled-3 is constitutively expressed in murine melanocyte precursors, melanocytes and human melanocytes. Wnt3a and Frizzled-3 signalings play important roles in regulating the proliferation and differentiation of murine NCCs and various developmental stages of melanocyte precursors. The effect of Wnt3a on human melanocytes is similar to its effects on murine melanocytes. Therefore Wnt3a/Frizzled-3 signaling is a promising target for human melanocyte regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Receptores Frizzled/metabolismo , Melanócitos/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Proteína Wnt3A/farmacologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Linhagem da Célula , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Di-Hidroxifenilalanina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Melaninas/metabolismo , Melanócitos/metabolismo , Camundongos Endogâmicos C57BL , Monofenol Mono-Oxigenase/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
17.
Eur J Cancer Prev ; 21(5): 467-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22828439

RESUMO

We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose , Asclepias , Dano ao DNA , Glicosídeos/uso terapêutico , Leucemia/tratamento farmacológico , Fitoterapia , Linhagem Celular Tumoral , Humanos , Preparações de Plantas/uso terapêutico , Raízes de Plantas
18.
World J Gastroenterol ; 18(8): 746-53, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22371634

RESUMO

AIM: To verify the usefulness of FibroQ for predicting fibrosis in patients with chronic hepatitis C, compared with other noninvasive tests. METHODS: This retrospective cohort study included 237 consecutive patients with chronic hepatitis C who had undergone percutaneous liver biopsy before treatment. FibroQ, aspartate aminotransferase (AST)/alanine aminotransferase ratio (AAR), AST to platelet ratio index, cirrhosis discriminant score, age-platelet index (API), Pohl score, FIB-4 index, and Lok's model were calculated and compared. RESULTS: FibroQ, FIB-4, AAR, API and Lok's model results increased significantly as fibrosis advanced (analysis of variance test: P < 0.001). FibroQ trended to be superior in predicting significant fibrosis score in chronic hepatitis C compared with other noninvasive tests. CONCLUSION: FibroQ is a simple and useful test for predicting significant fibrosis in patients with chronic hepatitis C.


Assuntos
Testes Hematológicos/métodos , Hepatite C Crônica/sangue , Hepatite C Crônica/patologia , Cirrose Hepática/sangue , Cirrose Hepática/patologia , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Adulto Jovem
19.
Life Sci ; 89(23-24): 886-95, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21983300

RESUMO

AIMS: Histone modifications play central epigenetic roles in regulating the entire genome of the cell and cell proliferation. Herein, we investigated the effects of the natural compound, 16-hydroxycleroda-3,13-dien-15,16-olide (PL3), on the expressions of histone-modifying enzymes, and examined how it induces apoptosis in leukemia K562 cells. MAIN METHODS: Cell proliferation was determined by an MTT assay, and histone-modifying enzyme gene expressions were investigated by a quantitative real-time PCR. Protein expressions were analyzed by a Western blot analysis. The histone H3K27 distribution was observed with immunofluorescence staining. To verify polycomb repressive complex 2 (PRC2) complex downstream gene expressions, a gene-expression array was performed to determine gene regulations. KEY FINDINGS: PL3 induced apoptosis and modulated many histone-modifying enzymes, especially the two PRC2 components, enhancer of zeste homolog 2 (EZH2) and suppressor of zeste 12 homolog (Suz12). Genes repressed by PRC2 were shown to be reactivated by PL3. Of these, 10 genes targeted by the PRC2 complex were identified, and expressions of 10 pro-/antiapoptotic genes were significantly regulated; these effects may have contributed to PL3-induced apoptosis in K562 cells. Regulation of other histone-modifying enzymes, including Aurora B, may also be involved in cell-cycle regulation. SIGNIFICANCE: Our data suggest that the induction of apoptosis by PL3 might partly occur through both a reduction in PRC2-mediated gene silencing and the reactivation of downstream tumor suppressor gene expressions. PL3 acts as a novel small-molecule histone modulator, which can potentially contribute to cancer chemotherapy singly or as a combined medication.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Células K562/efeitos dos fármacos , Proteínas Repressoras/biossíntese , Western Blotting , Proteínas de Transporte/biossíntese , Proteínas de Transporte/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Células K562/metabolismo , Microscopia de Fluorescência , Proteínas de Neoplasias , Proteínas Nucleares/biossíntese , Proteínas Nucleares/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/biossíntese , Fatores de Transcrição/efeitos dos fármacos
20.
Toxicology ; 285(1-2): 72-80, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21530604

RESUMO

The PI3K-AKT pathway and Aurora kinase play essential roles in such cellular processes as cell survival, angiogenesis, and differentiation, and are usually expressed at maximum levels during cancer cell proliferation. The present study investigated the effect of the natural compound, 16-hydroxycleroda-3,13-dien-15,16-olide (PL3), on regulating the PI3K-AKT pathway and Aurora B, which led to cancer cell apoptosis. PL3 acts as a PI3K inhibitor by influencing cell survival, signaling transduction, and cell cycle progression. It was observed that PL3 targeted and induced dephosphorylation of the PI3K pathway, degradation of Aurora B and mitotic-related gene expressions, and sequentially shut down the cell cycle. This eventually resulted in cell death. As Aurora B was downregulated, spindle dysfunction and destruction of the G2/M phase checkpoint resulted in DNA-damaged cells undergoing apoptosis. Moreover, PL3 also resensitized T315I-mutated Bcr-ABL+ BA/F3 cells to improve the cytotoxicity of Imatinib in Imatinib-resistant cell line. Taken together, PL3 can perturb the PI3K-AKT pathway and Aurora B resulting in gene silencing and cell cycle disturbance. It was demonstrated that PL3 acted like a novel small-molecule PI3K modulator, thereby potentially contributing to cancer chemotherapy and combination medication.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Antineoplásicos/farmacologia , Aurora Quinase B , Aurora Quinases , Benzamidas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Neoplasias/patologia , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA