Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559037

RESUMO

Andrographolide (Andro), the major constituent of Andrographis paniculata Nees (Acanthaceae), is was known to reduces inflammatory reaction. In the current study, the ability of Andro to reduce pain sensation in a rat post-operative wound model was explored. The hind paws of 18 Sprague-Dawley rats (SD) bearing post-operative wounds received the following three treatments: Saline, Andro via direct injection into the paw (Andro-injected) and Tablet containing Andro + poly (lactic-co-glycolic acid) (PLGA) (Andro-tablet). Von Frey tests assessed mechanical allodynia at 1, 3, 5 h and 1-, 2-, 3-, 4-, and 5-days post-operation. Behavioral analyses were performed to measure reaction threshold and reaction frequencies. Immunoreactivity of p-ERK and GluR1 was examined in the dorsal horn of the spinal cord. Histopathological and immunostaining studies were conducted on paw epidermis to observe the gross morphology and angiogenesis. The threshold for inducing allodynia increased and the reaction frequency reduced in the Andro-injected group compared to the saline-group, at 3 h post-surgery and the effect lasted between 3-4 days. The threshold for inducing pain and reaction frequency for the Andro-tablet group did not differ from the saline-treated group. The levels of p-ERK and GluR1 in the dorsal horn were reduced after Andro treatment. No significant difference in wound healing index was observed between saline and Andro-injected groups, but CD-31 staining showed less angiogenesis in the Andro-injected group. Andro significantly reduced mechanical allodynia compared to saline treatment, both in shorter and longer time frames. Furthermore, Andro influenced the expression of p-ERK and GluR1 in the dorsal horn, and the angiogenesis process in the wound healing area.

2.
Animals (Basel) ; 11(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34438836

RESUMO

Feline mammary tumor is a relatively commonly diagnosed neoplasm in the cat. Development of new veterinary cancer therapies is limited by the shortage of in vivo models that reproduce tumor microenvironment and metastatic progression. Four feline mammary tumor orthotopic patient-derived xenograft model (PDX) successfully established in NOD-SCID gamma (NSG) mice. The overall success rate of PDX establishment was 36% (4/11). Histological, immunohistochemical, and short tandem repeat analysis showed a remarkable similarity between patient's tumor and xenograft. The tumor grafts conserve original tumor essential features, including distant metastasis. Primary FMT-1807 cell line isolated from FMT-1807PDX tumor tissue. Tumorigenicity of FMT-1807 cells expanded from PDX was assessed by orthotopic injection into NSG mice. Mice yielded tumors which preserve the lung and liver metastasis ability. This work provides a platform for FMT translational investigation.

4.
World Neurosurg ; 122: e773-e782, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30391621

RESUMO

BACKGROUND: Surgery is the first-line therapy for glioblastoma. There is evidence that extent of resection is significantly associated with patient survival. Unfortunately, optimal surgical resection is usually limited because of the difficulty in discriminating tumor-infiltrated region and normal brain tissue. This study aimed to develop a tool to distinguish between infiltration zone and normal tissue in real time during glioma surgery. METHODS: In an in vivo study, C6 glioma cells were implanted into the left cerebral hemispheres of 6 rats to mimic tumorigenesis. A newly designed optical fiber-embedded needle probe was used to measure the autofluorescence of both cerebral hemispheres at various depths 5 days after the implantation. These rats were then sacrificed, and both cerebral hemispheres were removed for histopathologic analysis. RESULTS: Comparative analyses of corresponding areas by histopathology and autofluorescence revealed highly significant (P < 0.001) differences among the normal tissue, infiltration zone, tumors, and the contralateral cerebral hemispheres. The area of the receiver operating characteristic curve was 0.978, and the sensitivity and specificity of tumor delineation were 93.9% and 94.4%, respectively. CONCLUSIONS: The newly designed in vivo fiber-optic probe can distinguish tumor-infiltration zones from normal brain tissue in this in vivo study. Therefore, it may help neurosurgeons to increase extent of resection without damaging normal brain tissue and thus potentially improve the patients' survival and quality of life.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Sistemas Computacionais , Glioma/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Tecnologia de Fibra Óptica/métodos , Glioma/patologia , Invasividade Neoplásica/diagnóstico por imagem , Invasividade Neoplásica/patologia , Ratos , Ratos Sprague-Dawley
6.
Neurosurgery ; 70(2): 479-89; discussion 489-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21796002

RESUMO

BACKGROUND: Kringle 1-5 (K1-5) is a potent antiangiogenesis factor for treating breast cancer and hepatocellular carcinoma. However, its use in treating brain tumors has not been studied. OBJECTIVE: To evaluate whether K1-5 is effective at treating gliomas. METHODS: The effects of K1-5 on cell morphology and cytotoxicity with or without lipopolysaccharide were tested in primary mixed neuronal-glial cultures. The antiglioma activity of K1-5 was evaluated by intra-arterial administration of K1-5 at 4 days after implantation of C6 glioma cells into the rat hippocampus. In 1 group of animals, tumor size, tumor vasculature, and tumor histology were evaluated on day 12. Animal survival was assessed in the other group. RESULTS: In vitro studies showed that K1-5 did not induce cytotoxicity in neurons and glia. In vivo studies demonstrated that K1-5 reduced vessel length and vessel density and inhibited perivascular tumor invasion. In addition, K1-5 normalized vessel morphology, decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, decreased tumor hypoxia, and decreased pseudopalisading necrosis. The average tumor volume was smaller in the treated than in the untreated group. Furthermore, animals treated with K1-5 survived significantly longer. CONCLUSION: Kringle 1-5 effectively reduces the growth of malignant gliomas in the rat. Although still far from translation in humans, K1-5 might be a possible future alternative treatment option for patients with gliomas.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Kringles , Animais , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioma/patologia , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley
7.
J Gene Med ; 13(5): 283-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21557400

RESUMO

BACKGROUND: Following spinal cord injury, the delivery of neurotrophic factors to the injured spinal cord has been shown to promote axonal regeneration and functional recovery. In previous studies, we showed that acidic fibroblast growth factor (aFGF) is a potent neurotrophic factor that promotes the regeneration of axotomized spinal cord or dorsal root ganglion neurones. METHODS: We constructed a recombinant adeno-associated virus (AAV) vector to express human aFGF and evaluated aFGF expression and function in AAV-aFGF-infected PC12 cells. We analyzed AAV-green fluorescent protein (GFP) tropism and AAV-mediated aFGF expression in contused spinal cords. Animals received behavioural testing to evaluate the functional recovery. RESULTS: Overexpression of aFGF was shown in AAV-aFGF-infected PC12 cells in a dose-dependent manner. Concurrently, neurite extension and cell number were significantly increased in AAV-aFGF infected cells. AAV-mediated GFP expression persisted for at least 5 weeks in contused spinal cords, and the most prominently transduced cells were neurones. Contusive injury reduced endogenous aFGF expression in spinal cords. Overexpression of aFGF was demonstrated in AAV-aFGF transduced spinal cords compared to AAV-GFP transduced spinal cords at 3 and 14 days post-injury. Evaluation of motor function revealed that the improvement of AAV-aFGF-treated rats was prominent. Both AAV-aFGF- and recombinant human aFGF-treated rats revealed significantly better recovery at 5 weeks post-injury, compared to vehicle- and AAV-GFP-treated rats. CONCLUSIONS: These data suggest that supplement of aFGF improve the functional recovery of spinal cord-contused rats and that AAV-aFGF-mediated gene transfer could be a clinically feasible therapeutic approach for patients after nervous system injuries.


Assuntos
Dependovirus/genética , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/genética , Recuperação de Função Fisiológica/genética , Traumatismos da Medula Espinal/terapia , Animais , Astrócitos/metabolismo , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Neurônios/metabolismo , Células PC12 , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Transdução Genética , Transgenes/genética
8.
J Neurosci ; 31(11): 4137-47, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21411654

RESUMO

Spinal cord injury elicits an inflammatory response that recruits macrophages to the injured spinal cord. Quantitative real-time PCR results have shown that a repair strategy combining peripheral nerve grafts with acidic fibroblast growth factor (aFGF) induced higher interleukin-4 (IL-4), IL-10, and IL-13 levels in the graft areas of rat spinal cords compared with transected spinal cords at 10 and 14 d. This led to higher arginase I-positive alternatively activated macrophage (M2 macrophage) responses. The gene expression of several enzymes involved in polyamine biosynthesis pathways was also upregulated in the graft areas of repaired spinal cords. The treatment induced a twofold upregulation of polyamine levels at 14 d, as confirmed by HPLC. Polyamines are important for the repair process, as demonstrated by the observation that treatment with inhibitors of arginase I and ornithine decarboxylase attenuates the functional recoveries of repaired rats. After 14 d, the treatment also induced the expression of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as M2 macrophages within grafted nerves expressing BDNF. IL-4 was upregulated in the injury sites of transected rats that received aFGF alone compared with those that received nerve grafts alone at 10 d. Conversely, nerve graft treatment induced NGF and BDNF expression at 14 d. Macrophages expressing polyamines and BDNF may benefit axonal regeneration at 14 d. These results indicate that aFGF and nerve grafts regulate different macrophage responses, and M2 macrophages may play an important role in axonal regeneration after spinal cord injury in rats.


Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Interleucinas/metabolismo , Macrófagos/metabolismo , Fatores de Crescimento Neural/metabolismo , Nervos Periféricos/transplante , Poliaminas/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Arginase/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Feminino , Adesivo Tecidual de Fibrina , Imuno-Histoquímica , Atividade Motora/fisiologia , Inibidores da Ornitina Descarboxilase , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Regeneração da Medula Espinal , Fatores de Tempo , Regulação para Cima/fisiologia
9.
Ann N Y Acad Sci ; 1199: 194-203, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20633125

RESUMO

Glycine N-methyltransferase (GNMT) is the most abundant hepatic methyltransferase and plays important roles in regulating methyl group metabolism. In the central nervous system, GNMT expression is low and its function has not been revealed. The present study examines the effect of GNMT overexpression by adenovirus-mediated transfer in cortical mixed neuron-glial cultures. Infection of adenovirus encoding green fluorescence protein to cultures demonstrates high preference for non-neuronal cells. Optimal GNMT overexpression in cultures by adenoviral GNMT (Ad-GNMT) infection not only induces protein kinase C phosphorylation, but also increases neuronal/oligodendroglial survival. Furthermore, these Ad-GNMT-infected cultures are significantly resistant to H(2)O(2) toxicity and lipopolysaccharide stimulation. Conditioned media from Ad-GNMT-infected microglia also significantly enhance neuronal survival. Taken together, enhanced GNMT expression in mixed neuronal-glial cultures is neuroprotective, most likely mediated through non-neuronal cells.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Glicina N-Metiltransferase/genética , Microglia/enzimologia , Animais , Sequência de Bases , Western Blotting , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados , Primers do DNA , Imuno-Histoquímica , Microglia/citologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Neurotrauma ; 26(10): 1795-804, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19548814

RESUMO

The treatment of root injury is typically performed at the more chronic stages post injury, by which time a substantial number of neurons have died. Therefore, before being applied in the clinical setting, a treatment strategy for these lesions should prove to be as effective in the chronic stages of injury as it is in the acute stage. In this study, we simulated the most severe clinical scenarios to establish an optimal time window for repair at a chronic stage. The sixth to eighth cervical roots on the left side of female SD rats were cut at their junction with the spinal cord. One or three weeks later, the wound was reopened and these roots were repaired with intercostal nerve grafts, with subsequent application of aFGF and fibrin glue. In the control group, the wound was closed after re-exploration without further repair procedures. Sensory and motor functions were measured after the surgery. Spinal cord morphology, neuron survival, and nerve fiber regeneration were traced by CTB-HRP. Results showed that both the sensory and motor functions had significant recovery in the 1-week repair group, but not in the 3-week repair group. By CTB-HRP tracing, we found that the architecture of the spinal cords was relatively preserved in the 1-week repair group, while those of the control group showed significant atrophic change. There were regenerating nerve fibers in the dorsal horn and more motor neuron survival in the 1-week repair group compared to that of the 3-week group. It was concluded that treating transected cervical roots at a chronic stage with microsurgical nerve grafting and application of aFGF and fibrin glue can lead to significant functional recovery, as long as the repair is done before too many neurons die.


Assuntos
Regeneração Nervosa/fisiologia , Procedimentos Neurocirúrgicos/métodos , Recuperação de Função Fisiológica/fisiologia , Rizotomia/efeitos adversos , Raízes Nervosas Espinhais/cirurgia , Transplante de Tecidos/métodos , Animais , Sobrevivência Celular/fisiologia , Vértebras Cervicais , Toxina da Cólera/metabolismo , Doença Crônica , Modelos Animais de Doenças , Feminino , Adesivo Tecidual de Fibrina/uso terapêutico , Fatores de Crescimento de Fibroblastos/uso terapêutico , Peroxidase do Rábano Silvestre/metabolismo , Nervos Intercostais/transplante , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Degeneração Neural/terapia , Marcadores do Trato Nervoso/metabolismo , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Medula Espinal/cirurgia , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/fisiopatologia , Resultado do Tratamento
11.
Surg Neurol ; 70 Suppl 1: S1:9-18, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18440619

RESUMO

BACKGROUND: To better direct the repair of peripheral nerve after injury, an implant consisting of a multicomponent micropatterned conduit seeded with NSC was designed. METHODS: The mechanical properties of the chi-Au nanocomposites were tested. In vitro, the effect of chi-Au on cell behavior (NSC and glial cell line C6) and the influence of micropattern on cell alignment were evaluated. In vivo, the micropatterned conduits with/without the preseeded NSC were implanted to bridge a 10-mm-long defect of the sciatic nerve in 9 male Sprague-Dawley rats. The repair outcome was investigated 6 weeks after the surgery. RESULTS: Based on the dynamic modulus, chitosan with 50 ppm or more gold was a stronger material than others. In vitro, gold at 25 or 50 ppm led to better cell performance for NSC; and gold at 50 ppm gave better cell performance for C6. On the microgrooved substrate, the NSC had elongated processes oriented parallel to the grooves, whereas the NSC on the nonpatterned surfaces did not exhibit a particular bias in alignment. In vivo, the number of regenerated axons, the regenerated area, and the number of blood vessels were significantly higher in the NSC-preseeded conduit. CONCLUSION: Modification of the chitosan matrix by gold nanoparticles not only provides the mechanical strength but also affects the cellular response. The preliminary in vivo data demonstrated that the biodegradable micropatterned conduits preseeded with NSC provided a combination of physical and biological guidance cues for regenerating axons at the cellular level and offered a better alternative for repairing sciatic nerve transactions.


Assuntos
Quitosana , Ouro , Nanocompostos , Procedimentos Neurocirúrgicos , Próteses e Implantes , Nervo Isquiático/cirurgia , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Proliferação de Células , Citoesqueleto/ultraestrutura , Expressão Gênica , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Regeneração Nervosa , Desenho de Prótese , Ratos
12.
Am J Vet Res ; 66(9): 1623-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16261838

RESUMO

OBJECTIVE: To quantify and compare biochemical characteristics of the extracellular matrix (ECM) of specimens harvested from tensional and compressive regions of the superficial digital flexor tendon (SDFT) of horses in age classes that include neonates to mature horses. SAMPLE POPULATION: Tendon specimens were collected on postmortem examination from 40 juvenile horses (0, 5, 12, and 36 months old) without macroscopically visible signs of tendonitis. PROCEDURE: Central core specimens of the SDFT were obtained with a 4-mm-diameter biopsy punch from 2 loaded sites, the central part of the mid-metacarpal region and the central part of the mid-sesamoid region. Biochemical characteristics of the collagenous ECM content (ie, collagen, hydroxylysylpyridinoline crosslink, and pentosidine crosslink concentrations and percentage of degraded collagen) and noncollagenous ECM content (percentage of water and glycosaminoglycans, DNA, and hyaluronic acid concentrations) were measured. RESULTS: The biochemical composition of equine SDFT was not homogeneous at birth with respect to DNA, glycosaminoglycans, and pentosidine concentrations. For most biochemical variables, the amounts present at birth were dissimilar to those found in mature horses. Fast and substantial changes in all components of the matrix occurred in the period of growth and development after birth. CONCLUSIONS AND CLINICAL RELEVANCE: Unlike cartilage, tendon tissue is not biochemically blank (ie, homogeneous) at birth. However, a process of functional adaptation occurs during maturation that changes the composition of equine SDFT from birth to maturity. Understanding of the maturation process of the juvenile equine SDFT may be useful in developing exercise programs that minimize tendon injuries later in life that result from overuse.


Assuntos
Adaptação Fisiológica , Matriz Extracelular/química , Cavalos/crescimento & desenvolvimento , Metacarpo/crescimento & desenvolvimento , Tendões/crescimento & desenvolvimento , Fatores Etários , Análise de Variância , Animais , Fenômenos Biomecânicos , Cromatografia Líquida de Alta Pressão/veterinária , Colágeno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA