Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Anticancer Res ; 44(5): 1931-1938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677743

RESUMO

BACKGROUND/AIM: Renal cell carcinoma (RCC) presents a formidable clinical challenge due to its aggressive behavior and limited therapeutic options. Matrix metalloproteinase-8 (MMP-8) has recently emerged as a potential biomarker and therapeutic target for various cancers. However, the genetic involvement of MMP-8 in RCC has remained largely obscure. This study aimed to elucidate the role of MMP-8 genotypes in RCC susceptibility. MATERIALS AND METHODS: The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was employed to scrutinize the genotypes of MMP-8 C-799T (rs11225395), Val436Ala (rs34009635), and Lys460Thr (rs35866072) among 118 RCC patients and 590 controls. Furthermore, potential associations between MMP-8 genotypes and age, sex, smoking, alcohol consumption, hypertension, diabetes, and family history status in relation to RCC risk were assessed. RESULTS: No significant disparities in the distribution of MMP-8 rs11225395, rs34009635, and rs35866072 genotypes were observed between the RCC case and control cohorts (p>0.05). Individuals with CT and TT genotypes at MMP-8 rs11225395 exhibited 0.86- and 0.80-fold RCC risks, respectively (OR=0.57-1.31 and 0.42-1.55, p=0.5585 and 0.6228, respectively). Intriguingly, hypertensive individuals carrying the MMP-8 rs11225395 CT or TT genotype demonstrated an elevated risk for RCC compared to those with wild-type CC genotype (p=0.0440). No interactions of MMP-8 genotypes with age, sex, smoking, alcohol consumption, or diabetes status were evident (all p>0.05). No significant association was discerned for MMP-8 rs34009635 or rs35866072 genotypes. CONCLUSION: MMP-8 genotypes appear to have a modest influence on individual susceptibility to RCC. Hypertensive patients with the CT or TT MMP-8 rs11225395 genotype may have an elevated risk of RCC.


Assuntos
Carcinoma de Células Renais , Predisposição Genética para Doença , Genótipo , Neoplasias Renais , Metaloproteinase 8 da Matriz , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/patologia , Estudos de Casos e Controles , Neoplasias Renais/genética , Neoplasias Renais/epidemiologia , Metaloproteinase 8 da Matriz/genética , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Taiwan/epidemiologia
2.
Cell Biochem Funct ; 42(3): e4001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571370

RESUMO

Carbonic anhydrase 8 (CA8) is a member of the α-carbonic anhydrase family but does not catalyze the reversible hydration of carbon dioxide. In the present study, we examined the effects of CA8 on two human colon cancer cell lines, SW480 and SW620, by suppressing CA8 expression through shRNA knockdown. Our results showed that knockdown of CA8 decreased cell growth and cell mobility in SW620 cells, but not in SW480 cells. In addition, downregulated CA8 resulted in a significant decrease of glucose uptake in both SW480 and SW620 cells. Interestingly, stable downregulation of CA8 decreased phosphofructokinase-1 expression but increased glucose transporter 3 (GLUT3) levels in SW620 cells. However, transient downregulation of CA8 fails to up-regulate GLUT3 expression, indicating that the increased GLUT3 observed in SW620-shCA8 cells is a compensatory effect. In addition, the interaction between CA8 and GLUT3 was evidenced by pull-down and IP assays. On the other hand, we showed that metformin, a first-line drug for type II diabetes patients, significantly inhibited cell migration of SW620 cells, depending on the expressions of CA8 and focal adhesion kinase. Taken together, our data demonstrate that when compared to primary colon cancer SW480 cells, metastatic colon cancer SW620 cells respond differently to downregulated CA8, indicating that CA8 in more aggressive cancer cells may play a more important role in controlling cell survival and metformin response. CA8 may affect glucose metabolism- and cell invasion-related molecules in colon cancer, suggesting that CA8 may be a potential target in future cancer therapy.


Assuntos
Anidrases Carbônicas , Neoplasias do Colo , Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Transportador de Glucose Tipo 3/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias do Colo/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Glucose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
ACS Appl Mater Interfaces ; 16(15): 18285-18299, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574184

RESUMO

Changes in diet culture and modern lifestyle contributed to a higher incidence of gastrointestinal-related diseases, including gastritis, implicated in the pathogenesis of gastric cancer. This observation raised concerns regarding exposure to di(2-ethylhexyl) phthalate (DEHP), which is linked to adverse health effects, including reproductive and developmental problems, inflammatory response, and invasive adenocarcinoma. Research on the direct link between DEHP and gastric cancer is ongoing, and further studies are required to establish a conclusive association. In our study, extremely low concentrations of DEHP exerted significant effects on cell migration by promoting the epithelial-mesenchymal transition in gastric cancer cells. This effect was mediated by the modulation of the PI3K/AKT/mTOR and Smad2 signaling pathways. To address the DEHP challenges, our initial design of TPGS-conjugated fucoidan, delivered via pH-responsive nanoparticles, successfully demonstrated binding to the P-selectin protein. This achievement has not only enhanced the antigastric tumor efficacy but has also led to a significant reduction in the expression of malignant proteins associated with the condition. These findings underscore the promising clinical therapeutic potential of our approach.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Neoplasias Gástricas , Humanos , Plastificantes , Fosfatidilinositol 3-Quinases
4.
Life Sci ; 337: 122379, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145711

RESUMO

AIM: Gastric cancer contributes to cancer-related fatalities. Conventional chemotherapy faces challenges due to severe adverse effects, prompting recent research to focus on postbiotics, which are safer biomolecules derived from nonviable probiotics. Despite promising in vitro results, efficient in vivo delivery systems remain a challenge. This study aimed to design a potential nanoparticle (NP) formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 (SGMNL-133) isolate to enhance its therapeutic efficacy in treating gastric cancer. MAIN METHODS: We successfully isolated GMNL-133 (SGMNL-133) by optimizing the lysate extraction and column elution processes for L. paracasei GMNL-133, resulting in substantial enhancement of its capacity to inhibit the proliferation of gastric cancer cells. Additionally, we developed a potential NP utilizing arginine-chitosan and fucoidan encapsulating SGMNL-133. KEY FINDINGS: This innovative approach protected the SGMNL-133 from degradation by gastric acid, facilitated its penetration through the mucus layer, and enabled interaction with gastric cancer cells. Furthermore, in vivo experiments demonstrated that the encapsulation of SGMNL-133 in NPs significantly enhanced its efficacy in the treatment of orthotopic gastric tumors while simultaneously reducing tissue inflammation levels. SIGNIFICANCE: Recent research highlights postbiotics as a safe alternative, but in vivo delivery remains a challenge. Our study optimized the extraction of the lysate and column elution of GMNL-133, yielding SGMNL-133. We also developed NPs to protect SGMNL-133 from gastric acid, enhance mucus penetration, and improve the interaction with gastric cancer cells. This combination significantly enhanced drug delivery and anti-gastric tumor activity.


Assuntos
Nanopartículas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos
5.
In Vivo ; 37(6): 2452-2458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905646

RESUMO

BACKGROUND/AIM: The expression of matrix metalloproteinase 9 (MMP9) is elevated in various renal diseases, including renal cell carcinoma. However, the role of MMP9 genotype in this context remains unclear. This study aimed to investigate the association between MMP9 promoter rs3918242 genotypes and the risk of renal cell carcinoma. MATERIALS AND METHODS: The MMP9 rs3918242 genotypes of 118 patients with renal cell carcinoma and 590 healthy subjects were determined using the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS: The results indicated that individuals carrying the CT or TT genotype of MMP9 rs3918242 did not exhibit an increased risk of renal cell carcinoma compared to wild-type CC carriers (odds ratio=1.20 and 2.68, 95% confidence interval=0.75-1.92 and 0.89-8.03; p=0.5270 and 0.1420, respectively). However, individuals with the CT and TT genotypes had a higher prevalence of renal cell carcinoma than those with the CC genotype when they also had hypertension (p=0.0010), diabetes (p=0.0010), or a family history of cancer (p<0.00001). No correlation was observed between MMP9 rs3918242 genotypic distribution and age (60 years or younger vs. older than 60 years) or sex (both p>0.05). Additionally, no correlation was found between MMP9 rs3918242 genotype and the risk of renal cell carcinoma in individuals with smoking or alcohol consumption habits. CONCLUSION: Carrying the T allele for MMP9 rs3918242 may predict a higher risk of renal cell carcinoma among individuals diagnosed with hypertension, diabetes, or with a family history of cancer.


Assuntos
Carcinoma de Células Renais , Diabetes Mellitus , Hipertensão , Neoplasias Renais , Humanos , Pessoa de Meia-Idade , Carcinoma de Células Renais/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Neoplasias Renais/genética , Metaloproteinase 9 da Matriz/genética , Polimorfismo de Nucleotídeo Único
6.
Pharmacol Res ; 186: 106532, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334876

RESUMO

The stress of the abnormal stromal matrix of solid tumors is a major limiting factor that prevents drug penetration. Controlled, accurate, and efficient delivery of theranostic agents into tumor cells is crucial. Combining ultrasound with nanocarrierbased drug delivery systems have become a promising approach for targeted drug delivery in preclinical cancer therapy. In this study, to ensure effective tumor barrier penetration, access to the tumor microenvironment, and local drug release, we designed targeted nanoparticle (NP)-conjugated microbubbles (MBs); ultrasound could then help deliver acoustic energy to release the NPs from the MBs. The ultrasound-targeted MB destruction (UTMD) system of negatively charged NPs was conjugated with positively charged MBs using an ionic gelation method. We demonstrated the transfer of targeted NPs and their entry into gastric cancer cells through ligand-specific recognition, followed by enhanced cell growth inhibition owing to drug delivery-induced apoptosis. Moreover, the UTMD system combining therapeutic and ultrasound image properties can effectively target gastric cancer, thus significantly enhancing antitumor activity, as evident by tumor localization in an orthotopic mouse model of gastric cancer. The combination of ultrasound and NP-based drug delivery systems has become a promising approach for targeted drug delivery in preclinical cancer therapy.


Assuntos
Nanopartículas , Neoplasias Gástricas , Camundongos , Animais , Microbolhas , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Ultrassonografia , Sistemas de Liberação de Medicamentos/métodos , Microambiente Tumoral
7.
Mar Drugs ; 20(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135731

RESUMO

The standard of care for prostate cancer (PCa) is androgen deprivation therapy (ADT). Although hormone-sensitive PCa is curable by ADT, most conditions progress to castration-resistant prostate cancer (CRPCa) and metastatic CRPCa (mCRPCa). Front-line docetaxel has been administered to patients with CRPCa and mCRPCa. Nevertheless, docetaxel resistance after half a year of therapy has emerged as an urgent clinical concern in patients with CRPCa and mCRPCa. We verified the mechanism by which docetaxel-resistant PCa cells (DU/DX50) exhibited significant cell migration and expression of malignant tumor-related proteins. Our study shows that the biological activity of fucoidan has an important application for docetaxel-resistant PCa cells, inhibiting IL-1R by binding to P-selectin and reducing the expression levels of NF-κB p50 and Cox2 in this metastasis-inhibiting signaling pathway. Furthermore, the combined treatment of fucoidan and docetaxel showed significant anticancer and synergistic effects on the viability of DU/DX50 cells, which is relevant for overcoming the current limitations and improving treatment outcomes. Overall, fucoidan-based combination chemotherapy may exert beneficial effects and facilitate the treatment of docetaxel-resistant PCa.


Assuntos
Selectina-P , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/uso terapêutico , Androgênios , Ciclo-Oxigenase 2 , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Humanos , Masculino , NF-kappa B , Metástase Neoplásica/tratamento farmacológico , Polissacarídeos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
8.
Pharmaceutics ; 13(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34575403

RESUMO

Gastric cancer (GC) is a fatal malignant tumor, and effective therapies to attenuate its progression are lacking. Nanoparticle (NP)-based solutions may enable the design of novel treatments to eliminate GC. Refined, receptor-targetable NPs can selectively target cancer cells and improve the cellular uptake of drugs. To overcome the current limitations and enhance the therapeutic effects, epigallocatechin-3-gallate (EGCG) and low-concentration doxorubicin (DX) were encapsulated in fucoidan and d-alpha-tocopherylpoly (ethylene glycol) succinate-conjugated hyaluronic acid-based NPs for targeting P-selectin-and cluster of differentiation (CD)44-expressing gastric tumors. The EGCG/DX-loaded NPs bound to GC cells and released bioactive combination drugs, demonstrating better anti-cancer effects than the EGCG/DX combination solution. In vivo assays in an orthotopic gastric tumor mouse model showed that the EGCG/DX-loaded NPs significantly increased the activity of gastric tumors without inducing organ injury. Overall, our EGCG/DX-NP system exerted a beneficial effect on GC treatment and may facilitate the development of nanomedicine-based combination chemotherapy against GC in the future.

9.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069880

RESUMO

This research focuses on the proteolytic capacity of sea bass byproduct (SB) and their hypocholesterolemic activity via the cholesterol micelle formation (CMF) inhibition. SB was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. The lactic fermented SB was hydrolyzed with Protease N for 6 h under HHP to obtain the SB hydrolysates (HHP-assisted Protease N hydrolysis after fermentation, F-HHP-PN6). The supernatant was separated from the SB hydrolysate and freeze-dried. As the hydrolysis time extended to 6 h, soluble protein content increased from 187.1 to 565.8 mg/g, and peptide content increased from 112.8 to 421.9 mg/g, while inhibition of CMF increased from 75.0% to 88.4%. Decreasing the CMF inhibitory activity from 88.4% to 42.1% by simulated gastrointestinal digestion (FHHP-PN6 was further hydrolyzed by gastrointestinal enzymes, F-HHP-PN6-PP) reduced the CMF inhibitory activity of F-HHP-PN6. Using gel filtration chromatography, the F-HHP-PN6-PP was fractioned into six fractions. The molecular weight of the fifth fraction from F-HHP-PN6-PP was between 340 and 290 Da, and the highest inhibitory efficiency ratio (IER) on CMF was 238.9%/mg/mL. Further purification and identification of new peptides with CMF inhibitory activity presented the peptide sequences in Ser-Ala-Gln, Pro-Trp, and Val-Gly-Gly-Thr; the IERs were 361.7, 3230.0, and 302.9%/mg/mL, respectively.


Assuntos
Bass/metabolismo , Colesterol/química , Hidrolisados de Proteína/farmacologia , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Antioxidantes/farmacologia , Fermentação , Hidrólise , Pressão Hidrostática , Micelas , Peso Molecular , Oligopeptídeos , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Hidrolisados de Proteína/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteólise
10.
Biomedicines ; 9(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557143

RESUMO

Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men and usually becomes refractory because of recurrence and metastasis. CD44, a transmembrane glycoprotein, serves as a receptor for hyaluronic acid (HA). It has been found to be abundantly expressed in cancer stem cells (CSCs) that often exhibit a radioresistant phenotype. Cytolethal distending toxin (CDT), produced by Campylobacter jejuni, is a tripartite genotoxin composed of CdtA, CdtB, and CdtC subunits. Among the three, CdtB acts as a type I deoxyribonuclease (DNase I), which creates DNA double-strand breaks (DSBs). Nanoparticles loaded with antitumor drugs and specific ligands that recognize cancerous cell receptors are promising methods to overcome the therapeutic challenges. In this study, HA-decorated nanoparticle-encapsulated CdtB (HA-CdtB-NPs) were prepared and their targeted therapeutic activity in radioresistant PCa cells was evaluated. Our results showed that HA-CdtB-NPs sensitized radioresistant PCa cells by enhancing DSB and causing G2/M cell-cycle arrest, without affecting the normal prostate epithelial cells. HA-CdtB-NPs possess maximum target specificity and delivery efficiency of CdtB into the nucleus and enhance the effect of radiation in radioresistant PCa cells. These findings demonstrate that HA-CdtB-NPs exert target specificity accompanied with radiomimetic activity and can be developed as an effective strategy against radioresistant PCa.

11.
J Mater Chem B ; 8(45): 10416-10427, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33112350

RESUMO

Docetaxel-based chemotherapy for prostate cancer is the clinical standard of care. However, nonspecific targeting, multiple drug resistance, and adverse side effects are common obstacles. Various natural compounds, including epigallocatechin-3-gallate (EGCG) in combination with taxane, have the potential to be developed as anticancer therapeutics. Although synergistic hydrophobic-hydrophilic combination drugs have been used with some success, the main drawbacks of this approach are poor bioavailability, unfavorable pharmacokinetics, and low tissue distribution. To improve their synergistic effect and overcome limitations, we encapsulated EGCG and low-dose docetaxel within TPGS-conjugated hyaluronic acid and fucoidan-based nanoparticles. This approach might facilitate simultaneous target-specific markers at the edge and center of the tumor and then might increase intratumoral drug accumulation. Additionally, the successful release of bioactive combination drugs was regulated by the pH-sensitive nanoparticles and internalization into prostate cancer cells through CD44 and P-selectin ligand recognition, and the inhibition of cell growth via induced G2/M phase cell cycle arrest was observed in in vitro study. In in vivo studies, treatment with cancer-targeted combination drug-loaded nanoparticles significantly attenuated tumor growth and increased M30 protein expression without causing organ damage. Overall, the multifunctional nanoparticle system improved the drugs' synergistic effect, indicating great potential in its development as a prostate cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Catequina/análogos & derivados , Docetaxel/administração & dosagem , Nanopartículas Multifuncionais/química , Neoplasias da Próstata/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Catequina/administração & dosagem , Catequina/uso terapêutico , Docetaxel/uso terapêutico , Portadores de Fármacos/química , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Humanos , Masculino , Camundongos SCID
12.
Front Bioeng Biotechnol ; 8: 570490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042972

RESUMO

There is an increasing interest in the design of targeted carrier systems with combined therapeutic and diagnostic modalities. Therapeutic modalities targeting tumors with single ligand-based targeting nanocarriers are insufficient for proficient delivery and for targeting two different surface receptors that are overexpressed in cancer cells. Here, we evaluated an activated nanoparticle delivery system comprising fucoidan/hyaluronic acid to improve therapeutic efficacy. The system comprised polyethylene glycol-gelatin-encapsulated epigallocatechin gallate (EGCG), poly (D,L-lactide-co-glycolide; PLGA), and stable iron oxide nanoparticles (IOs). The latter enables targeting of prostate cancers in their molecular images. We demonstrate the transfer of nanoparticles and their entry into prostate cancer cells through ligand-specific recognition. This system may prove the benefits of drug delivery that enhances the inhibition of cell growth through apoptosis induction. Moreover, the improved targeting of nanotheranostics significantly suppressed orthotopic prostate tumor growth and more accurately targeted tumors compared with systemic combination therapy. In the presence of nanoparticles with iron oxides, the hypointensity of the prostate tumor was visualized on a T2-weignted magnetic resonance image. The diagnostic ability of this system was demonstrated by accumulating fluorescent nanoparticles in the prostate tumor from the in vivo imaging system, computed tomography. It is suggested that theranostic nanoparticles combined with a molecular imaging system can be a promising cancer therapy in the future.

13.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878305

RESUMO

The aim of this study was to develop a macrophage-targeted nanoparticle composed of hyaluronan/fucoidan complexes with polyethylene glycol-gelatin to encapsulate and deliver epigallocatechin-3-gallate (EGCG), a compound that can regulate macrophage activation and pro-inflammatory mediator production. We show that our nanoparticles can successfully bond to macrophages and deliver more EGCG than an EGCG solution treatment, confirming the anti-inflammatory effects of these nanoparticles in lipopolysaccharide-stimulated macrophages. The prepared nanoparticles were established with a small mean particle size (217.00 ± 14.00 nm), an acceptable polydispersity index (0.28 ± 0.07), an acceptable zeta potential value (-33.60 ± 1.30 mV), and a high EGCG loading efficiency (52.08% ± 5.37%). The targeting abilities of CD44 binding were increased as the hyaluronan concentration increased and decreased by adding a competitor CD44 antibody. Moreover, we found that fucoidan treatment significantly reduced macrophage migration after lipopolysaccharide treatment in a dose-responsive manner. In summary, we successfully created macrophage-targeted nanoparticles for effective targeted delivery of EGCG, which should aid in the development of future anti-inflammatory drugs against macrophage-related diseases.


Assuntos
Catequina/análogos & derivados , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Polissacarídeos/química , Animais , Catequina/química , Catequina/farmacologia , Movimento Celular , Portadores de Fármacos/química , Receptores de Hialuronatos/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Células RAW 264.7
14.
J Nanobiotechnology ; 18(1): 58, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272948

RESUMO

BACKGROUND: The anti-angiogenic fusion protein RBDV-IgG1 Fc (RBDV), which comprises the receptor-binding domain of vascular endothelial growth factor-A (VEGF-A), has shown antitumour effects by reducing angiogenesis in vivo. This study used the cationic lipoplex lipo-PEG-PEI-complex (LPPC) to simultaneously encapsulate both the RBDV targeting protein and the RBDV plasmid (pRBDV) without covalent bonds to assess VEGFR targeting gene therapy in mice with melanoma in vivo. RESULTS: LPPC protected the therapeutic transgene from degradation by DNase, and the LPPC/RBDV complexes could specifically target VEGFR-positive B16-F10 cells both in vitro and in vivo. With or without RBDV protein-targeting direction, the pRBDV-expressing RBDV proteins were expressed and reached a maximal concentration on the 7th day in the sera after transfection in vivo and significantly elicited growth suppression against B16-F10 melanoma but not IgG1 control proteins. In particular, LPPC/pRBDV/RBDV treatment with the targeting molecules dramatically inhibited B16-F10 tumour growth in vivo to provide better therapeutic efficacy than the treatments with gene therapy with IgG1 protein targeting or administration of a protein drug with RBDV. CONCLUSIONS: The simultaneous combination of the LPPC complex with pRBDV gene therapy and RBDV protein targeting might be a potential tool to conveniently administer targeted gene therapy for cancer therapy.


Assuntos
Inibidores da Angiogênese/genética , Terapia Genética/métodos , Lipossomos/química , Melanoma Experimental/terapia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células 3T3 , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Masculino , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/uso terapêutico , Domínios Proteicos/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Taxa de Sobrevida , Transplante Homólogo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
ACS Appl Mater Interfaces ; 11(27): 23880-23892, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31192580

RESUMO

Various natural compounds including epigallocatechin gallate (EGCG) and curcumin (CU) have potential in developing anticancer therapy. However, their clinical use is commonly limited by instability and low tissue distribution. EGCG and CU combined treatment can improve the efficacy with synergistic effects. To improve the synergistic effect and overcome the limitations of low tissue distribution, we applied a dual cancer-targeted nanoparticle system to co-deliver EGCG and CU. Nanoparticles were composed of hyaluronic acid, fucoidan, and poly(ethylene glycol)-gelatin to encapsulate EGCG and CU. Furthermore, a dual targeting system was established with hyaluronic acid and fucoidan, which were used as agents for targeting CD44 on prostate cancer cells and P-selectin in tumor vasculature, respectively. Their effect and efficacy were investigated in prostate cancer cells and a orthotopic prostate tumor model. The EGCG/CU-loaded nanoparticles bound to prostate cancer cells, which were uptaken more into cells, leading to a better anticancer efficiency compared to the EGCG/CU combination solution. In addition, the releases of EGCG and CU were regulated by their pH value that avoided the premature release. In mice, treatment of the cancer-targeted EGCG/CU-loaded nanoparticles significantly attenuated the orthotopic tumor growth without inducing organ injuries. Overall, the dual-targeted nanoparticle system for the co-delivery of EGCG and CU greatly improved its synergistic effect in cancer therapy, indicating its great potential in developing treatments for prostate cancer therapy.


Assuntos
Catequina/análogos & derivados , Curcumina , Sistemas de Liberação de Medicamentos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Animais , Catequina/química , Catequina/farmacocinética , Catequina/farmacologia , Curcumina/farmacocinética , Curcumina/farmacologia , Humanos , Receptores de Hialuronatos/metabolismo , Masculino , Camundongos , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Selectina-P/metabolismo , Células PC-3 , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nutrients ; 11(6)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208053

RESUMO

This research focuses on cobia skin hydrolysates and their antihypertensive effects via the inhibitory activities of angiotensin I-converting enzyme (ACE). Marine fish Cobia (Rachycentron canadum) skin was hydrolysed for 5 h using Protamex and Protease N to obtain the cobia skin protein hydrolysates PX-5 and PN-5, respectively. The soluble protein and peptide contents of the PX-5 were 612 and 270 mg/g, respectively, and for the PN-5, 531 and 400 mg/g, respectively. The IC50 of PX-5 and PN-5 on ACE was 0.221 and 0.291 mg/mL, respectively. Increasing the IC50 from 0.221 to 0.044 mg/mL by simulated gastrointestinal digestion (PX-5G) reduced the ACE-inhibitory capacity of PX-5. Using gel filtration chromatography, the PX-5G was fractioned into eight fractions. The molecular weight of the fifth fraction from PX-5G was between 630 and 450 Da, and the highest inhibitory efficiency ratio on ACE was 1552.4%/mg/mL. We identified four peptide sequences: Trp-Ala-Ala, Ala-Trp-Trp, Ile-Trp-Trp, and Trp-Leu, with IC50 values for ACE of 118.50, 9.40, 0.51, and 26.80 µM, respectively. At a dose of 600 mg PX-5 powder/kg body weight, in spontaneously hypertensive rats PX-5's antihypertensive effect significantly reduced systolic and diastolic blood pressure by 21.9 and 15.5 mm Hg, respectively, after 4 h of oral gavage.


Assuntos
Anti-Hipertensivos/farmacologia , Peixes , Peptídeos/farmacologia , Hidrolisados de Proteína/farmacologia , Pele/química , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cromatografia em Gel , Digestão , Hipertensão/tratamento farmacológico , Peso Molecular , Ratos , Ratos Endogâmicos SHR
18.
Nutrients ; 10(10)2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275420

RESUMO

Hot water was used to obtain Chlorella sorokiniana hot water extract (HWE). Subsequently, this byproduct was freeze-dried, hydrolysed at 50 °C using Protease N to obtain C. sorokiniana protein hydrolysates (PN-1), and then digested with a gastrointestinal enzyme (PN-1G). The inhibitory effects of the HWE and hydrolysates against angiotensin I-converting enzyme (ACE) were investigated. The soluble protein and peptide contents were 379.9 and 179.7 mg/g, respectively, for HWE and 574.8 and 332.8 mg/g, respectively, for PN-1. The IC50 values of the HWE, PN-1, and PN-1G on ACE were 1.070, 0.035, and 0.044 mg/mL, respectively. PN-1G was separated into seven fractions through size exclusion chromatography. The sixth fraction of the hydrolysate had a molecular weight between 270 and 340 Da, and the lowest IC50 value on ACE was 0.015 mg/mL. The amino acid sequences of the ACE-inhibitory peptides were Trp-Val, Val-Trp, Ile-Trp, and Leu-Trp, of which the IC50 values were 307.61, 0.58, 0.50, and 1.11 µΜ, respectively. Systolic blood pressure and diastolic blood pressure were reduced 20 and 21 mm Hg, respectively, in spontaneously hypertensive rats after 6 h of oral administration with a dose of 171.4 mg PN-1 powder/kg body weight.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Chlorella/química , Peptídeos/farmacologia , Hidrolisados de Proteína/farmacologia , Sequência de Aminoácidos , Animais , Pressão Sanguínea/efeitos dos fármacos , Cromatografia em Gel , Hipertensão/tratamento farmacológico , Masculino , Peso Molecular , Ratos , Ratos Endogâmicos SHR
19.
Molecules ; 23(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642399

RESUMO

This study utilized pomelo steam distillation to isolate pomelo peel essential oil. The constituents were then analyzed through gas chromatography-mass spectrometry (GC-MS), and the antibacterial activity of the essential oil emulsions at different homogenizer speed conditions and concentrations of water-soluble chitosan (degree of acetylation, DA = 54.8%) against S. aureus and E. coli was examined. Analysis of the essential oil composition identified a total of 33 compounds with the main constituent, limonene accounting for 87.5% (940.07 mg/g) of the total. The pomelo peel oil was emulsified through homogenization at 24,000 rpm, resulting in a minimal inhibitory concentration (MIC) for E. coli that was 1.9 times lower than that of the essential oil without homogenization. In addition, a mixture of 0.4% essential oil emulsion and 0.03% water-soluble chitosan had the strongest synergetic antibacterial effect on S. aureus and E. coli at pH 7.4. In comparison with chitosan alone, the MIC value of this mixture was significantly 2.4 and 2.5 times lower. Hence, this study suggests using a mixture of emulsified pomelo peel oil and water-soluble chitosan to develop a novel natural food preservative, and that the processability of food, as well as the economic value of the byproducts of the Taiwan Matou pomelo and chitosan, could be increased.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Citrus/química , Óleos Voláteis/farmacologia , Antibacterianos/química , Quitosana/química , Cicloexenos/isolamento & purificação , Cicloexenos/farmacologia , Escherichia coli/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Terpenos/isolamento & purificação , Terpenos/farmacologia
20.
ACS Biomater Sci Eng ; 4(8): 2847-2859, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-33435008

RESUMO

The clinical treatment of gastric cancer is hampered by the development of anticancer drug resistance as well as the unfavorable pharmacokinetics, nontarget toxicity, and inadequate intratumoral accumulation of current chemotherapies. The polyphenol epigallocatechin gallate in combination with doxorubicin exhibits synergistic inhibition P-glycoprotein efflux pump activity and cancer cell growth. This study evaluated a potential activated nanoparticle delivery system comprising a hyaluronic acid complex with polyethylene glycol-conjugated gelatin containing encapsulated epigallocatechin gallate and low-dose doxorubicin, which may facilitate targeted drug administration to gastric cancer cells. We confirmed successful delivery of bioactive combination drugs and internalization into gastric cancer cells through CD44 ligand recognition and ensuing inhibition of cell proliferation via caspase-induced apoptosis and G2/M phase cell cycle arrest. Furthermore, the targeted nanoparticles significantly suppressed gastric tumor activity and reduced both tumor and heart tissue inflammatory reaction in vivo compared to systemic combination treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA