Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1305: 342588, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677842

RESUMO

BACKGROUND: Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS: We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 µM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 µM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE: We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Viscosidade , Humanos , Dióxido de Enxofre/análise , Sulfitos/análise , Sulfitos/química , Limite de Detecção , Compostos de Quinolínio/química
2.
Talanta ; 256: 124302, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708620

RESUMO

The intracellular viscosity is an important parameter of the microenvironment and SO2 is a vital gas signal molecule. At present, some dual-response fluorescence probes for simultaneous measurements of viscosity and SO2 derivatives (HSO3-/SO32-) possessed poor water solubility. In this work, we developed a water-soluble fluorescence probe CIJ (0.0864 g/100 mL of water at 20 °C) for simultaneous measurements of viscosity and SO2 derivatives. CIJ exhibited a sensitive fluorescence enhancement to environmental viscosity from 0.97 to 28.04 cP based on a twisted intramolecular charge transfer mechanism and was applied to effective measurement of viscosity in vitro and in vivo. CIJ could also respond to SO2 derivatives with a low detection limit (44 nM) and a fast response time (5 min) based on the nucleophilic addition reaction. Furthermore, CIJ was applied to monitor SO2 derivatives in ratiometric response manner in living cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Humanos , Solubilidade , Viscosidade , Sulfitos , Células HeLa , Água , Dióxido de Enxofre
3.
J Cell Biochem ; 124(3): 373-381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649442

RESUMO

Esterase D (ESD) is a nonspecific esterase widely distributed in various organisms. ESD plays an important role in regulating cholesterol efflux, inhibiting viral replication and lung cancer growth. MT2A (metallothionein 2A) is the most important isoform of metallothionein (MTs) in human and high expression of MT2A in tumors represents poor prognosis and metastatic behavior. However, there are no reports about the molecular mechanism of ESD in the regulation of tumor metastasis. In this study, we found for the first time that activation ESD promoted its interaction with MT2A and decreased the protein level of MT2A, which resulting in the concentration of free zinc ions up-regulated, and inhibited the migration of A549 lung cancer cells in vitro.


Assuntos
Carboxilesterase , Neoplasias Pulmonares , Metalotioneína , Humanos , Células A549 , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Carboxilesterase/genética , Carboxilesterase/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia
4.
Cell Adh Migr ; 16(1): 107-114, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36203272

RESUMO

Hypochlorous acid (HOCl) is an essential signal molecule in cancer cells. Activated GRP78 ATPase by a HOCl probe named ZBM-H inhibits lung cancer cell growth. However, the role and underlying mechanism of GRP78 ATPase in lung cancer cell migration have not been established. Here, we reported that activation of GRP78 ATPase by ZBM-H suppressed A549 cell migration and inhibited EMT process. Notably, ZBM-H time-dependently decreased the protein level of integrin ß4 (ITGB4) in A549 cells. Combinatorial treatment of 3BDO (an autophagy inhibitor) and ZBM-H partially rescued the protein level of ITGB4. Consistently, 3BDO partially reversed ZBM-H-inhibited cell migration. Furthermore, ZBM-H promoted the interaction between ANXA7 and Hsc70, which participated in the regulation of selective autophagy and degradation of ITGB4.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Integrina beta4 , Neoplasias Pulmonares , Células A549 , Adenosina Trifosfatases , Linhagem Celular Tumoral , Movimento Celular , Humanos , Ácido Hipocloroso , Integrina beta4/metabolismo
5.
Genes (Basel) ; 13(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35627173

RESUMO

Esterase D (ESD) is widely distributed in mammals, and it plays an important role in drug metabolism, detoxification, and biomarkers and is closely related to the development of tumors. In our previous work, we found that a chemical small-molecule fluorescent pyrazoline derivative, FPD5, an ESD activator, could inhibit tumor growth by activating ESD, but its molecular mechanism is still unclear. Here, by using RNA interference (RNAi), andco-immunoprecipitation techniques, we found that ESD suppressed the nucleus exportation of p53 through reducing the interaction between p53 and JAB1. The protein level of p53 in the nucleus was upregulated and the downstream targets of p53 were found by Human Gene Expression Array. p53 inhibited the expression of CDCA8 and CDC20. Lastly, the cell cycle of A549 cells was arrested at the G0/G1 phase. Together, our data suggest that ESD inhibited the cancer cell growth by arresting the cell cycle of A549 cells via the JAB1/p53 signaling pathway. Our findings provide a new insight into how to inhibit the growth of lung cancer with the activation of ESD by FPD5.


Assuntos
Carboxilesterase/metabolismo , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Células A549 , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mamíferos , Tioléster Hidrolases , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Eur J Pharm Sci ; 174: 106199, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533965

RESUMO

Combination therapy is frequently used in cancer treatments. Delivery of combined anticancer agents loaded in a nanocarrier would be a promising option for combination therapy. Here, we designed PEGylated nano-liposomes for co-delivery Docetaxel (Doc) and Resveratrol (Res) to evaluate antitumor efficiency of the combined drugs in prostate cancer. The average diameter of the liposomes was 99.67 nm with a spheral-like shape. Drug release studies showed that both drugs could synchronously leak from the liposomes in a sustained release behavior. Cellular uptake results demonstrated that liposomes could effectively deliver more cargos into cells than other formulations. Moreover, co-loaded liposomes with Doc/Res in a molar ratio of 1:2 exhibited significantly higher cytotoxicity than a mixed solution containing both drugs on cancer cells. In the study of caspase 3, we found that the combination of Doc and Res could significantly increase the activity of caspase 3 enzyme compared with Doc alone. Animal studies revealed that co-encapsulated Doc/Res in liposomes predominantly inhibited tumor growth in PC3 bearing Balb/c nude mice, as evidenced by a change in cell proliferation and apoptosis parameters. Importantly, little toxicities and prolonged survival time were observed in mice treated with liposome-loaded Doc/Res than control group exposed to liposome-free Doc/Res. These results provided evidence that loading of Doc/Res in a nano-liposome is an efficient delivery formulation for synergistic treating prostate cancer.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Animais , Antineoplásicos/uso terapêutico , Caspase 3 , Linhagem Celular Tumoral , Docetaxel , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/tratamento farmacológico , Resveratrol
7.
J Cell Biochem ; 123(4): 798-806, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35118704

RESUMO

Hypochlorous acid (HOCl) is an essential signal for the regulation of cancer cell fate, including autophagy and apoptosis. HOCl regulated autophagy by affecting the oxidation modification of glucose-regulated protein 78 (GRP78) and the activity of GRP78 ATPase. The mechanism of GRP78 ATPase in cell apoptosis has however not yet been clarified. Here we reported that ZBM-H, as a probe of HOCl, was able to directly bind to GRP78 in the presence or absence of ATP. Following ZBM-H treatment, the interaction between GRP78 and annexin A7 (ANXA7) was promoted, and this was accompanied by increased phosphorylation of integrin ß4 (ITGB4). In addition, ZBM-H enhanced the phosphorylation of ANXA7. ABO, an inhibitor of ANXA7, inhibited ZBM-H-induced ITGB4 phosphorylation and apoptosis, while ANXA7 activator SEC had opposite effect. Collectively, these data provide new evidence for the mechanism by which ZBM-H-induced activation of GRP78 ATPase regulates apoptosis of A549 lung cancer cells.


Assuntos
Anexina A7 , Neoplasias Pulmonares , Adenosina Trifosfatases/metabolismo , Anexina A7/genética , Apoptose , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo
8.
Cell Mol Biol Lett ; 26(1): 50, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34875997

RESUMO

BACKGROUND: Esterase D (ESD) is a nonspecific esterase that detoxifies formaldehyde. Many reports have stated that ESD activity is associated with a variety of physiological and pathological processes. However, the detailed signaling pathway of ESD remains poorly understood. METHODS: Considering the advantages of the small chemical molecule, our recent work demonstrated that 4-chloro-2-(5-phenyl-1-(pyridin-2-yl)-4,5-dihydro-1H-pyrazol-3-yl) phenol (FPD5) activates ESD, and will be a good tool for studying ESD further. Firstly, we determined the interaction between ESD and FK506 binding protein 25 (FKBP25) by yeast two-hybrid assay and co-immunoprecipitation (CO-IP) and analyzed the phosphorylation levels of mTORC1, P70S6K and 4EBP1 by western blot. Furthermore, we used the sulforhodamine B (SRB) and chick chorioallantoic membrane (CAM) assay to analyze cell viability in vitro and in vivo after treatment with ESD activator FPD5. RESULTS: We screened FKBP25 as a candidate protein to interact with ESD by yeast two-hybrid assay. Then we verified the interaction between ESD and endogenous FKBP25 or ectopically expressed GFP-FKBP25 by CO-IP. Moreover, the N-terminus (1-90 aa) domain of FKBP25 served as the crucial element for their interaction. More importantly, ESD reduced the K48-linked poly-ubiquitin chains of FKBP25 and thus stabilized cytoplasmic FKBP25. ESD also promoted FKBP25 to bind more mTORC1, suppressing the activity of mTORC1. In addition, ESD suppressed tumor cell growth in vitro and in vivo through autophagy. CONCLUSIONS: These findings provide novel evidence for elucidating the molecular mechanism of ESD and ubiquitination of FKBP25 to regulate autophagy and cancer cell growth. The ESD/FKBP25/mTORC1 signaling pathway is involved in inhibiting tumor cell growth via regulating autophagy.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Galinhas , Células HEK293 , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tacrolimo/farmacologia , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia
9.
Apoptosis ; 26(1-2): 111-131, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389358

RESUMO

H2S is actual an endogenous signaling gas molecule and involved in a range of cell physiological processes. However, the mechanism of endogenous H2S regulating autophagy and apoptosis has not been thoroughly investigated. Here, we try to address this issue by using a H2S probe, (E)-2-(4-(4-(7-(diethylamino)-2-oxo-2H-chromene-3-carbonyl)-piperazin-1-yl)-styryl)-1, 3, 3-trimethyl-3H-indol-1-ium iodide (CPC), which could react with endogenous H2S. Herein, we reported that CPC inhibited autophagy and decreased the expression and activity of NF-E2-related factor 2 (Nrf2), then induced cell apoptosis. CPC inhibited autophagy and promoted apoptosis by inhibiting Nrf2 activation, which was H2S dependent. Furthermore, we found that CPC inhibited Nrf2 nucleus translocation by inhibiting glutathionylation of Kelch-like ECH-associated protein 1 (Keap1) at the Cys434 residue. CPC also inhibited various cancer cell growth, but had no effect on normal cell growth in vitro, and inhibited A549 cancer growth, but did not affect normal angiogenesis in vivo. Therefore, we not only found a new inhibitor of autophagy and Nrf2, but also suggested a novel mechanism that endogenous H2S could regulate autophagy, apoptosis and Nrf2 activity through regulating glutathionylation of Keap1 at the Cys434 residue.


Assuntos
Apoptose , Autofagia , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Cisteína/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
FASEB J ; 34(9): 12932-12945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33000523

RESUMO

We previously demonstrated that Tetraticopeptide 4 (TTC4) inhibited apoptosis in vascular endothelial cells (VEC) deprived of serum and fibroblast growth factor 2 (FGF-2). In this study, we aimed to resolve the mechanism of TTC4 inhibiting VEC apoptosis. TTC4, predicted as a HSP70 co-chaperone protein, may regulate the fate of cells by affecting the activity of HSP70, however, there is no experimental evidence showing the interaction of TTC4 and HSP70. Using Co-immunoprecipitation (Co-IP), we demonstrated that TTC4 interacted with HSP70. If HSP70 was knockdown, TTC4 no longer suppressed apoptosis. Furthermore, we found ABO, an inhibitor of annexin A7 (ANXA7) GTPase, could promote the interaction of TTC4 and HSP70 and the translocation of ANXA7 to lysosome. At the same time, ABO inhibited the interaction of HSP70 and ANXA7. Moreover, Akt, as a downstream effector of HSP70 was upregulated, and ANXA7 translocating to lysosome protected the stability of lysosomal membrane. Here, we discovered a special mechanism by which TTC4 inhibited apoptosis via HSP70 in VECs. On the one hand, increasing TTC4 and HSP70 interaction upregulated Akt that inhibited apoptosis. On the other hand, decreasing HSP70 and ANXA7 interaction promoted the translocation of ANXA7 to lysosome, which inhibited apoptosis through protecting the lysosomal membrane stability.


Assuntos
Anexina A7/metabolismo , Apoptose , Proteínas de Choque Térmico HSP70/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Lisossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Cell Death Dis ; 11(7): 551, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686662

RESUMO

A series of fluorescent thiazole-pyrazoline derivatives was synthesized and their structures were characterized by 1H NMR, 13C NMR, and HRMS. Biological evaluation demonstrated that these compounds could effectively inhibit the growth of human non-small cell lung cancer (NSCLC) A549 cells in a dose- and time-dependent manner in vitro and inhibit tumor growth in vivo. The structure-activity relationship (SAR) of the compounds was analyzed. Further mechanism research revealed they could induce autophagy and cell cycle arrest while had no influence on cell necrosis. Compound 5e inhibited the activity of mTOR via FKBP12, which could be reversed by 3BDO, an mTOR activator and autophagy inhibitor. Compound 5e inhibited growth, promoted autophagy of A549 cells in vivo. Moreover, compound 5e showed good selectivity with no influence on normal vascular endothelial cell growth and the normal chick embryo chorioallantoic membrane (CAM) capillary formation. Therefore, our research provides potential lead compounds for the development of new anticancer drugs against human lung cancer.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Pirazóis/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tiazóis/farmacologia , Células A549 , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Fluorescência , Fluoruracila/farmacologia , Humanos , Concentração Inibidora 50 , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Tiazóis/síntese química , Tiazóis/química
12.
J Mater Chem B ; 8(26): 5722-5728, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32514507

RESUMO

A new mitochondria-targeted fluorescent probe RBC, constructed using a coumarin moiety which was selected as the donor and a benzothiazole derivative as the acceptor, for SO2 derivatives (HSO3-/SO32-) was presented. The probe designed on a new FRET platform showed high selectivity and a low detection limit. Importantly, the probe could respond to HSO3-/SO32- within 35 s. Furthermore, the probe could target mitochondria and was successfully used for fluorescence imaging of endogenous bisulfite in HepG2 with low cytotoxicity, which significantly assisted in cancer diagnosis.


Assuntos
Benzotiazóis/farmacologia , Cumarínicos/farmacologia , Corantes Fluorescentes/farmacologia , Mitocôndrias/efeitos dos fármacos , Dióxido de Enxofre/análise , Benzotiazóis/química , Células Cultivadas , Cumarínicos/síntese química , Cumarínicos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
13.
Analyst ; 145(8): 2937-2944, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32104823

RESUMO

A unique fluorescent probe (ZACA) for the monitoring of SO2 derivatives was developed from coumarin and benzoindoles based on FRET and ICT. ZACA exhibited an active emission signal, large Stokes shift, wide emission window distance, and high photostability. It also possessed many advantages in the ratiometric detection of HSO3-/SO32- including low detection limit and high selectivity and sensitivity. Importantly, ZACA was successfully applied in the ratiometric detection of endogenous HSO3-/SO32- in living cells with excellent cellular imaging capability (1 µM) and mitochondria-targeting ability (co-localization coefficient: 0.91).


Assuntos
Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Sulfitos/análise , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/química , Corantes Fluorescentes/síntese química , Humanos , Indóis/síntese química , Indóis/química , Limite de Detecção , Microscopia de Fluorescência
14.
Cell Death Dis ; 10(11): 858, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719525

RESUMO

The level of hypochlorous acid (HOCl) in cancer cells is higher than that in non-cancer cells. HOCl is an essential signal for the regulation of cell fate and works mainly through the protein post-translational modifications in cancer cells. However, the mechanism of HOCl regulating autophagy has not been clarified. Here we reported that a HOCl probe named ZBM-H targeted endoplasmic reticulum and induced an intact autophagy flux in lung cancer cells. Furthermore, ZBM-H promoted the binding of GRP78 to AMPK and increased the phosphorylation of AMPK in a dose- and time-dependent manner. GRP78 knockdown inhibited ZBM-H-induced AMPK phosphorylation and ZBM-H-stimulated autophagy. In addition, mass spectrometry combined with point mutation experiments revealed that ZBM-H increased GRP78 activity by inhibiting HOCl-induced lysine 353 oxidation of GRP78. Following ZBM-H treatment in vitro and in vivo, cell growth was significantly inhibited while apoptosis was induced. Nevertheless, exogenous HOCl partially reversed ZBM-H-inhibited cell growth and ZBM-H-induced GRP78 activation. In brief, we found that an endoplasmic reticulum-targeted HOCl probe named ZBM-H, acting through attenuating HOCl-induced GRP78 oxidation, inhibited tumor cell survival by promoting autophagy and apoptosis. Overall, these data demonstrated a novel mechanism of hypochlorous acid regulating autophagy by promoting the oxidation modification of GRP78.


Assuntos
Proteínas de Choque Térmico/genética , Ácido Hipocloroso/metabolismo , Neoplasias Pulmonares/genética , Proteínas Quinases/genética , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Apoptose/genética , Autofagia/genética , Linhagem da Célula/genética , Sobrevivência Celular/genética , Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Oxirredução , Fosforilação , Transdução de Sinais/genética
15.
Medicine (Baltimore) ; 98(44): e17743, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31689825

RESUMO

BACKGROUND: Polyphyllin I has been reported to possess anticancer properties in various cancer types, including prostate cancer. However, little is known about the potential of Polyphyllin I in induction of prostate cancer cell cycle arrest and its underlying mechanisms. METHODS: The anti-proliferation activity of Polyphyllin I was tested using cell counting kit-8 assay. The cell cycle arrest effects of Polyphyllin I were confirmed by flow cytometry. Western blot was used to test the effect of Polyphyllin I on cell cycle-related protein expression. Reverse transcription-polymerase chain reaction was used to test the expression of genes regulating P21 expression. RESULTS: Polyphyllin I induced prostate cancer cell cycle arrest in G0/G1 phase in concentration-dependent manner. Polyphyllin I induced cell cycle arrest by upregulating the expression of P21. Further studies showed that the upregulation of p21 expression induced by Polyphyllin I via the upregulation of IL6 expression. CONCLUSION: Polyphyllin I could induce cell cycle arrest in G0/G1 phase in prostate cancer cells by upregulating the expression of P21 and IL6.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Diosgenina/análogos & derivados , Interleucina-6/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Linhagem Celular Tumoral , Diosgenina/farmacologia , Humanos , Masculino
16.
Oncol Rep ; 42(6): 2716-2727, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31578574

RESUMO

Acquired resistance to cisplatin (CDDP) in esophageal squamous cell carcinoma (ESCC) remains a major challenge in cancer therapy. Although progress has been made in identifying the mechanisms responsible for resistance to CDDP, the underlying mechanisms of resistance in ESCC are still not entirely understood. In the present study, a CDDP­resistant ESCC cell line EC109/CDDP was established by culturing parental EC109 cells in increasing concentrations of CDDP, and it was demonstrated that MutY homolog (MUTYH), a critical base excision repair gene, was significantly downregulated in the resistant EC109/CDDP cells compared with that noted in the parental cells. Ectopic expression of MUTYH by transient transfection of pcDNA3.1­MUTYH plasmid significantly enhanced the CDDP­mediated inhibitory effect on resistant cell proliferation and induction of apoptosis, while silencing of MUTYH by transiently transfecting MUTYH­targeted siRNA in parental cells led to decreased sensitivity to CDDP as demonstrated by MTT assay, suggesting the crucial involvement of MUTYH in CDDP resistance. Further experiments demonstrated that the CDDP­resistant cells went through epithelial­mesenchymal transition (EMT) driven by its master regulator Twist, and MUTYH overexpression significantly reduced the Twist expression level and reversed the phenotype of EMT as detected by western blot analysis and RT­qPCR assays, suggesting that downregulation of MUTYH contributed to the Twist­mediated EMT. Moreover, it was observed that the effect of MUTYH on Twist was also associated with its degradation in addition to transcription. MUTYH acted as a positive regulator of reactive oxygen species (ROS) that showed a low level in resistant cells via flow cytometry assay, as demonstrated by increased ROS production in response to MUTYH overexpression. Reduced ROS by using N­acetylcysteine led to a decrease in proteasome activity and sequentially inhibited the degradation of Twist. In conclusion, the present data demonstrated that EMT activation mediated by MUTYH downregulation, by both enhancing Twist transcription and blocking its degradation, is one of the mechanisms for acquisition of CDDP resistance in ESCC.


Assuntos
DNA Glicosilases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Transição Epitelial-Mesenquimal/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Bioorg Med Chem ; 27(13): 2845-2856, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103402

RESUMO

Biological activities of a series of fluorescent compounds against human lung cancer cell line A549 were investigated. The results showed that (E)-1,3,3-trimethyl-2-(4-(piperidin-1-yl)styryl)-3H-indol-1-ium iodide (8) and (E)-2-(5,5-dimethyl-3-(4-(piperazin-1-yl)styryl)cyclohex-2-en-1-ylidene) malononitrile (11) could inhibit the growth of A549 cancer cells in a dose and time-dependent manner. Furthermore, compound 8 could trigger autophagy and apoptosis, but not obviously induce necrosis under the stimulatory condition. Therefore, 8 can be used as autophagy activator to investigate the regulatory mechanism of autophagy and may offer a new candidate for the treatment of lung cancer.


Assuntos
Células A549/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/fisiopatologia , Humanos , Estrutura Molecular
18.
Biochem Biophys Res Commun ; 511(1): 92-98, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30770100

RESUMO

Vascular endothelial cell (VEC) apoptosis takes part in the development of various cardiovascular diseases. Heat shock protein 90 (HSP90) regulates apoptosis through various apoptosis associated client proteins. In previous study, we identified a novel HSP90 inhibitor HCP1 induced apoptosis in A549 human lung cancer cells. Here, we found that low-concentration HCP1 (1 µM, 2 µM) suppressed VEC apoptosis caused by serum and fibroblast growth factor 2 (FGF-2) deprivation. HCP1 directly bound to glucose-regulated protein 94 (Grp94), an isoform of HSP90 located in endoplasmic reticulum, and HCP1 selectively inhibited Grp94 activity via binding to site 3. Overexpression of Grp94 inhibited the anti-apoptotic effect of HCP1 in human umbilical vein endothelial cells. Therefore, we provided HCP1 as a new VEC apoptosis inhibitor which might be a potential compound in the treatment of VEC apoptosis related vascular diseases. And we provided new pieces of evidence to understand the role of Grp94 in VEC apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glicoproteínas de Membrana/antagonistas & inibidores , Pirazóis/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Glicoproteínas de Membrana/metabolismo , Pirazóis/química
19.
Acta Pharmacol Sin ; 40(5): 689-698, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30171201

RESUMO

Acquired docetaxel-resistance of prostate cancer (PCa) remains a clinical obstacle due to the lack of effective therapies. Acetyl-11-keto-ß-boswellic acid (AKBA) is a pentacyclic triterpenic acid isolated from the fragrant gum resin of the Boswellia serrata tree, which has shown intriguing antitumor activity against human cell lines established from PCa, colon cancer, malignant glioma, and leukemia. In this study, we examined the effects of AKBA against docetaxel-resistant PCa in vitro and in vivo as well as its anticancer mechanisms. We showed that AKBA dose-dependently inhibited cell proliferation and induced cell apoptosis in docetaxel-resistant PC3/Doc cells; its IC50 value in anti-proliferation was ∼17 µM. Furthermore, AKBA dose-dependently suppressed the chemoresistant stem cell-like properties of PC3/Doc cells, evidenced by significant decrease in the ability of mammosphere formation and down-regulated expression of a number of stemness-associated genes. The activation of Akt and Stat3 signaling pathways was remarkably enhanced in PC3/Doc cells, which contributed to their chemoresistant stem-like phenotype. AKBA (10-30 µM) dose-dependently suppressed the activation of Akt and Stat3 signaling pathways in PC3/Doc cells. In contrast, overexpression of Akt and Stat3 significantly attenuated the inhibition of AKBA on PC3/Doc cell proliferation. In docetaxel-resistant PCa homograft mice, treatment with AKBA significantly suppresses the growth of homograft RM-1/Doc, equivalent to its human PC3/Doc, but did not decrease their body weight. In summary, we demonstrate that AKBA inhibits the growth inhibition of docetaxel-resistant PCa cells in vitro and in vivo via blocking Akt and Stat3 signaling, thus suppressing their cancer stem cell-like properties.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel/farmacologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/efeitos dos fármacos , Triterpenos/farmacologia
20.
Curr Urol ; 11(3): 131-138, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29692692

RESUMO

OBJECTIVES: Paris polyphylla var. yunnanensis (PPVY), a Chinese herb, has long been used for cancer treatment, and its steroidal saponins are suggested to exert an anti-tumor activity, however, the underlying mechanism is incompletely understood and their effect on bladder cancer (BC) remains unknown. The present study is thus designed to address these issues. MATERIAL AND METHODS: Total steroidal saponins were extracted with ethanol from PPVY and used to treat BC cells (HT1197 and J82 carrying mutant p53). Gene expression was determined using qPCR and immunoblotting and cell cycle analyzed using flow cytometry. DNA damage response activation was assessed using immunofluorescence staining. RESULTS: PPVY saponins treatment led to dose-dependent declines in the number of both HT1197 and J82 cells with IC50 approximately 1.2 µg/ml, which was coupled with strong growth arrest at G2/M phase and the activation of DNA damage response pathway. Moreover, the clonogenic potential of these cells was severely impaired even in the presence of low concentrations of PPVY saponins. Mechanistically, PPVY saponins induced the degradation of mutant p53 while stimulated CDKN1A gene transcription. Phosphorylated AKT was diminished in PPVY saponin-treated cells, but its specific inhibitor LY294002 exhibited significantly weaker efficacy in inducing CDKN1A expression than did PPVY saponins. CONCLUSION: PPVY saponins activate DNA damage response pathway, degrade mutant p53 and stimulate CDKN1A expression, thereby inhibiting BC cell growth. Given their poor absorption via oral administration, PPVY saponins may be applicable for intravesical instillations in BC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA