Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(12): e202319583, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38282100

RESUMO

Small molecules, including therapeutic drugs and tracer molecules, play a vital role in biological processing, disease treatment and diagnosis, and have inspired various nanobiotechnology approaches to realize their biological function, particularly in drug delivery. Desirable features of a delivery system for functional small molecules (FSMs) include high biocompatibility, high loading capacity, and simple manufacturing processes, without the need for chemical modification of the FSM itself. Herein, we report a simple and versatile approach, based on metal-phenolic-mediated assembly, for assembling FSMs into nanoparticles (i.e., FSM-MPN NPs) under aqueous and ambient conditions. We demonstrate loading of anticancer drugs, latency reversal agents, and fluorophores at up to ~80 % that is mostly facilitated by π and hydrophobic interactions between the FSM and nanoparticle components. Secondary nanoparticle engineering involving coating with a polyphenol-antibody thin film or sequential co-loading of multiple FSMs enables cancer cell targeting and combination delivery, respectively. Incorporating fluorophores into FSM-MPN NPs enables the visualization of biodistribution at different time points, revealing that most of these NPs are retained in the kidney and heart 24 h post intravenous administration. This work provides a viable pathway for the rational design of small molecule nanoparticle delivery platforms for diverse biological applications.


Assuntos
Nanopartículas , Distribuição Tecidual , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Fenóis , Polifenóis , Metais
2.
Adv Mater ; 36(6): e2307680, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997498

RESUMO

Antibiotic-resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal-phenolic network (am-MPN) NPs through the one-step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+ ) in aqueous solution. The Cu2+ -based am-MPN NPs display lower Cu2+ antimicrobial concentrations (by 10-1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol-based am-MPN NPs. The NPs exhibit excellent performance against multidrug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA-infected skin wounds. This study provides insights on the antimicrobial properties of metal-phenolic materials and the rational design of antimicrobial metal-organic materials.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Camundongos , Animais , Peixe-Zebra , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Cicatrização , Bactérias , Testes de Sensibilidade Microbiana
3.
Angew Chem Int Ed Engl ; 62(45): e202312925, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800651

RESUMO

Coordination assembly offers a versatile means to developing advanced materials for various applications. However, current strategies for assembling metal-organic networks into nanoparticles (NPs) often face challenges such as the use of toxic organic solvents, cytotoxicity because of synthetic organic ligands, and complex synthesis procedures. Herein, we directly assemble metal-organic networks into NPs using metal ions and polyphenols (i.e., metal-phenolic networks (MPNs)) in aqueous solutions without templating or seeding agents. We demonstrate the role of buffers (e.g., phosphate buffer) in governing NP formation and the engineering of the NP physicochemical properties (e.g., tunable sizes from 50 to 270 nm) by altering the assembly conditions. A library of MPN NPs is prepared using natural polyphenols and various metal ions. Diverse functional cargos, including anticancer drugs and proteins with different molecular weights and isoelectric points, are readily loaded within the NPs for various applications (e.g., biocatalysis, therapeutic delivery) by direct mixing, without surface modification, owing to the strong affinity of polyphenols to various guest molecules. This study provides insights into the assembly mechanism of metal-organic complexes into NPs and offers a simple strategy to engineer nanosized materials with desired properties for diverse biotechnological applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Fenóis , Polifenóis/química , Nanopartículas/química , Metais/química , Água
4.
J Am Chem Soc ; 145(44): 24108-24115, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37788442

RESUMO

Protocells have garnered considerable attention from cell biologists, materials scientists, and synthetic biologists. Phase-separating coacervate microdroplets have emerged as a promising cytomimetic model because they can internalize and concentrate components from dilute surrounding environments. However, the membrane-free nature of such coacervates leads to coalescence into a bulk phase, a phenomenon that is not representative of the cells they are designed to mimic. Herein, we develop a membranized peptide coacervate (PC) with oppositely charged oligopeptides as the molecularly crowded cytosol and a metal-phenolic network (MPN) coating as the membrane. The hybrid protocell efficiently internalizes various bioactive macromolecules (e.g., bovine serum albumin and immunoglobulin G) (>90%) while also resisting radicals due to the semipermeable cytoprotective membrane. Notably, the resultant PC@MPNs are capable of anabolic cascade reactions and remain in discrete protocellular populations without coalescence. Finally, we demonstrate that the MPN protocell membrane can be postfunctionalized with various functional molecules (e.g., folic acid and fluorescence dye) to more closely resemble actual cells with complex membranes, such as recognition molecules, which allows for drug delivery. This membrane-bound cytosolic protocell structure paves the way for innovative synthetic cells with structural and functional complexity.


Assuntos
Células Artificiais , Células Artificiais/química , Peptídeos , Soroalbumina Bovina/química , Substâncias Macromoleculares
5.
Angew Chem Int Ed Engl ; 62(12): e202214935, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36700351

RESUMO

DNA-based materials have attracted interest due to the tunable structure and encoded biological functionality of nucleic acids. A simple and general approach to synthesize DNA-based materials with fine control over morphology and bioactivity is important to expand their applications. Here, we report the synthesis of DNA-based particles via the supramolecular assembly of tannic acid (TA) and DNA. Uniform particles with different morphologies are obtained using a variety of DNA building blocks. The particles enable the co-delivery of cytosine-guanine adjuvant sequences and the antigen ovalbumin in model cells. Intramuscular injection of the particles in mice induces antigen-specific antibody production and T cell responses with no apparent toxicity. Protein expression in cells is shown using capsules assembled from TA and plasmid DNA. This work highlights the potential of TA as a universal material for directing the supramolecular assembly of DNA into gene and vaccine delivery platforms.


Assuntos
Adjuvantes Imunológicos , Polifenóis , Camundongos , Animais , Adjuvantes Imunológicos/química , Antígenos , Sistemas de Liberação de Medicamentos , DNA/química
6.
Adv Mater ; 35(1): e2209015, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36245327

RESUMO

Solar desalination is one of the most promising strategies to address the global freshwater shortage crisis. However, the residual salt accumulated on the top surface of solar evaporators severely reduces light absorption and steam evaporation efficiency, thus impeding the further industrialization of this technology. Herein, a metal-phenolic network (MPN)-engineered 3D evaporator composed of photothermal superhydrophilic/superhydrophobic sponges and side-twining hydrophilic threads for efficient desalination with directional salt crystallization and zero liquid discharge is reported. The MPN coatings afford the engineering of alternating photothermal superhydrophilic/superhydrophobic sponges with high heating efficiency and defined vapor escape channels, while the side-twining threads induce site-selective salt crystallization. The 3D evaporator exhibits a high and stable indoor desalination rate (≈2.3 kg m-2  h-1 ) of concentrated seawater (20 wt%) under simulated sun irradiation for over 21 days without the need for salt crystallization inhibitors. This direct desalination is also achieved in outdoor field operations with a production rate of clean water up to ≈1.82 kg m-2  h-1 from concentrated seawater (10 wt%). Together with the high affinity and multiple functions of MPNs, this work is expected to facilitate the rational design of solar desalination devices and boost the research translation of MPN materials in broader applications.

7.
J Am Chem Soc ; 144(27): 12510-12519, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775928

RESUMO

Supramolecular assembly affords the development of a wide range of polypeptide-based biomaterials for drug delivery and nanomedicine. However, there remains a need to develop a platform for the rapid synthesis and study of diverse polypeptide-based materials without the need for employing complex chemistries. Herein, we develop a versatile strategy for creating polypeptide-based materials using polyphenols that display multiple synergistic cross-linking interactions with different polypeptide side groups. We evaluated the diverse interactions operating within these polypeptide-polyphenol networks via binding affinity, thermodynamics, and molecular docking studies and found that positively charged polypeptides (Ka of ∼2 × 104 M-1) and polyproline (Ka of ∼2 × 106 M-1) exhibited stronger interactions with polyphenols than other amino acids (Ka of ∼2 × 103 M-1). Free-standing particles (capsules) were obtained from different homopolypeptides using a template-mediated strategy. The properties of the capsules varied with the homopolypeptide used, for example, positively charged polypeptides produced thicker shell walls (120 nm) with reduced permeability and involved multiple interactions (i.e., electrostatic and hydrogen), whereas uncharged polypeptides generated thinner (10 nm) and more permeable shell walls due to the dominant hydrophobic interactions. Polyarginine imparted cell penetration and endosomal escape properties to the polyarginine-tannic acid capsules, enabling enhanced delivery of the drug doxorubicin (2.5 times higher intracellular fluorescence after 24 h) and a corresponding higher cell death in vitro when compared with polyproline-tannic acid capsules. The ability to readily complex polyphenols with different types of polypeptides highlights that a wide range of functional materials can be generated for various applications.


Assuntos
Peptídeos , Polifenóis , Cápsulas/química , Sistemas de Liberação de Medicamentos , Simulação de Acoplamento Molecular , Peptídeos/química , Taninos/química
8.
ACS Appl Mater Interfaces ; 14(3): 3740-3751, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019268

RESUMO

Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.


Assuntos
Materiais Biocompatíveis/química , Fibrinolíticos/farmacologia , Polifenóis/química , Terapia Trombolítica , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Linhagem Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Fibrinolíticos/química , Humanos , Teste de Materiais , Camundongos , Nanopartículas/química , Temperatura , Ativador de Plasminogênio Tecidual/química
9.
Adv Mater ; 34(10): e2108624, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933398

RESUMO

The integration of bioactive materials (e.g., proteins and genes) into nanoparticles holds promise in fields ranging from catalysis to biomedicine. However, it is challenging to develop a simple and broadly applicable nanoparticle platform that can readily incorporate distinct biomacromolecules without affecting their intrinsic activity. Herein, a metal-phenolic assembly approach is presented whereby diverse functional nanoparticles can be readily assembled in water by combining various synthetic and natural building blocks, including poly(ethylene glycol), phenolic ligands, metal ions, and bioactive macromolecules. The assembly process is primarily mediated by metal-phenolic complexes through coordination and hydrophobic interactions, which yields uniform and spherical nanoparticles (mostly <200 nm), while preserving the function of the incorporated biomacromolecules (siRNA and five different proteins used). The functionality of the assembled nanoparticles is demonstrated through cancer cell apoptosis, RNA degradation, catalysis, and gene downregulation studies. Furthermore, the resulting nanoparticles can be used as building blocks for the secondary engineering of superstructures via templating and cross-linking with metal ions. The bioactivity and versatility of the platform can potentially be used for the streamlined and rational design of future bioactive materials.


Assuntos
Nanopartículas , Catálise , Interações Hidrofóbicas e Hidrofílicas , Metais/química , Nanopartículas/química , Fenóis/química
10.
Angew Chem Int Ed Engl ; 60(47): 24968-24975, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528750

RESUMO

The development of fluorescence labeling techniques has attracted widespread interest in various fields, including biomedical science as it can facilitate high-resolution imaging and the spatiotemporal understanding of various biological processes. We report a supramolecular fluorescence labeling strategy using luminescent metal-phenolic networks (MPNs) constructed from metal ions, phenolic ligands, and common and commercially available dyes. The rapid labeling process (<5 min) produces ultrathin coatings (≈10 nm) on diverse particles (e.g., organic, inorganic, and biological entities) with customized luminescence (e.g., red, blue, multichromatic, and white light) simply through the selection of fluorophores. The fluorescent coatings are stable at pH values from 1 to 8 and in complex biological media owing to the dominant π interactions between the dyes and MPNs. These coatings exhibit negligible cytotoxicity and their strong fluorescence is retained even when internalized into intracellular compartments. This strategy is expected to provide a versatile approach for fluorescence labeling with potential in diverse fields across the physical and life sciences.


Assuntos
Cor , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Metais Pesados/química , Fenóis/química , Tamanho da Partícula
11.
Angew Chem Int Ed Engl ; 60(37): 20225-20230, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34258845

RESUMO

Interfacial modular assembly has emerged as an adaptable strategy for engineering the surface properties of substrates in biomedicine, photonics, and catalysis. Herein, we report a versatile and robust coating (pBDT-TA), self-assembled from tannic acid (TA) and a self-polymerizing aromatic dithiol (i.e., benzene-1,4-dithiol, BDT), that can be engineered on diverse substrates with a precisely tuned thickness (5-40 nm) by varying the concentration of BDT used. The pBDT-TA coating is stabilized by covalent (disulfide) bonds and supramolecular (π-π) interactions, endowing the coating with high stability in various harsh aqueous environments across ionic strength, pH, temperature (e.g., 100 mM NaCl, HCl (pH 1) or NaOH (pH 13), and water at 100 °C), as well as surfactant solution (e.g., 100 mM Triton X-100) and biological buffer (e.g., Dulbecco's phosphate-buffered saline), as validated by experiments and simulations. Moreover, the reported pBDT-TA coating enables secondary reactions on the coating for engineering hybrid adlayers (e.g., ZIF-8 shells) via phenolic-mediated adhesion, and the facile integration of aromatic fluorescent dyes (e.g., rhodamine B) via π interactions without requiring elaborate synthetic processes.


Assuntos
Corantes Fluorescentes/química , Imidazóis/química , Estruturas Metalorgânicas/química , Rodaminas/química , Compostos de Sulfidrila/química , Taninos/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Concentração Osmolar , Temperatura
12.
ACS Nano ; 15(6): 10025-10038, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34009935

RESUMO

Poly(ethylene glycol) (PEG) is widely used in particle assembly to impart biocompatibility and stealth-like properties in vivo for diverse biomedical applications. Previous studies have examined the effect of PEG molecular weight and PEG coating density on the biological fate of various particles; however, there are few studies that detail the fundamental role of PEG molecular architecture in particle engineering and bio-nano interactions. Herein, we engineered PEG particles using a mesoporous silica (MS) templating method and investigated how the PEG building block architecture impacted the physicochemical properties (e.g., surface chemistry and mechanical characteristics) of the PEG particles and subsequently modulated particle-immune cell interactions in human blood. Varying the PEG architecture from 3-arm to 4-arm, 6-arm, and 8-arm generated PEG particles with a denser, stiffer structure, with increasing elastic modulus from 1.5 to 14.9 kPa, inducing an increasing level of immune cell association (from 15% for 3-arm to 45% for 8-arm) with monocytes. In contrast, the precursor PEG particles with the template intact (MS@PEG) were stiffer and generally displayed higher levels of immune cell association but showed the opposite trend-immune cell association decreased with increasing PEG arm numbers. Proteomics analysis demonstrated that the biomolecular corona that formed on the PEG particles minimally influenced particle-immune cell interactions, whereas the MS@PEG particle-cell interactions correlated with the composition of the corona that was abundant in histidine-rich glycoproteins. Our work highlights the role of PEG architecture in the design of stealth PEG-based particles, thus providing a link between the synthetic nature of particles and their biological behavior in blood.


Assuntos
Polietilenoglicóis , Dióxido de Silício , Comunicação Celular , Humanos , Peso Molecular , Monócitos , Tamanho da Partícula
13.
ACS Nano ; 14(10): 12972-12981, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32997490

RESUMO

Intracellular delivery of proteins is a promising strategy for regulating cellular behavior and therefore has attracted interest for biomedical applications. Despite the emergence of various nanoparticle-based intracellular delivery approaches, it remains challenging to engineer a versatile delivery system capable of responding to various physiological triggers without the need for complex chemical synthesis of the delivery system. Herein, we develop a template-mediated supramolecular assembly strategy to synthesize protein-polyphenol nanoparticles (NPs) capable of endosomal escape and subsequent protein release in the cytosol. These NPs are stable in serum and undergo surface charge reversal from negative to positive in acidic environments, leading to spontaneous endosomal escape. In the cytosol, endogenous small peptides and amino acids with relatively high charge densities, such as glutathione, trigger NP disassembly through competitive supramolecular interactions, thereby releasing functional bioactive proteins, as validated using cytochrome C and ß-galactosidase. The versatility of the present strategy in terms of nanoparticle size, protein type, and functional protein delivery makes this a promising platform for potential application in the field of protein therapeutics.


Assuntos
Nanopartículas , Polifenóis , Endossomos , Peptídeos , Proteínas
14.
Nat Commun ; 11(1): 4804, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968077

RESUMO

We report a facile strategy for engineering diverse particles based on the supramolecular assembly of natural polyphenols and a self-polymerizable aromatic dithiol. In aqueous conditions, uniform and size-tunable supramolecular particles are assembled through π-π interactions as mediated by polyphenols. Owing to the high binding affinity of phenolic motifs present at the surface, these particles allow for the subsequent deposition of various materials (i.e., organic, inorganic, and hybrid components), producing a variety of monodisperse functional particles. Moreover, the solvent-dependent disassembly of the supramolecular networks enables their removal, generating a wide range of corresponding hollow structures including capsules and yolk-shell structures. The versatility of these supramolecular networks, combined with their negligible cytotoxicity provides a pathway for the rational design of a range of particle systems (including core-shell, hollow, and yolk-shell) with potential in biomedical and environmental applications.

15.
Small ; 16(37): e2002750, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32762023

RESUMO

There is a need for effective vaccine delivery systems and vaccine adjuvants without extraneous excipients that can compromise or minimize their efficacy. Vaccine adjuvants cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) can effectively activate immune responses to secrete cytokines. However, CpG ODNs are not stable in serum due to enzymatic cleavage and are difficult to transport through cell membranes. Herein, DNA microcapsules made of CpG ODNs arranged into 3D nanostructures are developed to improve the serum stability and immunostimulatory effect of CpG. The DNA microcapsules allow encapsulation and co-delivery of cargoes, including glycogen. The DNA capsules, with >4 million copies of CpG motifs per capsule, are internalized in cells and accumulate in endosomes, where the Toll-like receptor 9 is engaged by CpG. The capsules induce up to 10-fold and 20-fold increases in tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion, respectively, in RAW264.7 cells compared with CpG ODNs. Furthermore, the microcapsules stimulate TNF-α and IL-6 secretion in a concentration- and time-dependent manner. The immunostimulatory activity of the capsules correlates to their intracellular trafficking, endosomal confinement, and degradation, assessed by confocal and super-resolution microscopy. These DNA capsules can serve as both adjuvants to stimulate an immune reaction and vehicles to encapsulate vaccine peptides/genes to achieve synergistic immune effects.


Assuntos
Adjuvantes Imunológicos , Oligodesoxirribonucleotídeos , Cápsulas , Citocinas , DNA
16.
Acc Chem Res ; 53(7): 1269-1278, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32567830

RESUMO

Polyphenols are naturally occurring compounds that are ubiquitous in plants and display a spectrum of physical, chemical, and biological properties. For example, they are antioxidants, have therapeutic properties, absorb UV radiation, and complex with metal ions. Additionally, polyphenols display high adherence, which has been exploited for assembling nanostructured materials. We previously reviewed the assembly of different phenolic materials and their applications (Angew. Chem. Int. Ed. 2019, 58, 1904-1927); however, there is a need for a summary of the fundamental interactions that govern the assembly, stability, and function of polyphenol-based materials. A detailed understanding of interactions between polyphenols and various other building blocks will facilitate the rational design and assembly of advanced polyphenol particles for specific applications. This Account discusses how different interactions and bonding (i.e., hydrogen, π, hydrophobic, metal coordination, covalent, and electrostatic) can be leveraged to assemble and stabilize polyphenol-based particles for diverse applications. In polyphenol-mediated assembly strategies, the polyphenols typically exert more than one type of stabilizing attractive force. However, one interaction often dominates the assembly process and dictates the physicochemical behavior of the particles, which in turn influences potential applications. This Account is thus divided into sections that each focus on a key interaction with relevant examples of applications to highlight structure-function relationships. For example, metal coordination generally becomes weaker at lower pH, which makes it possible to engineer metal-phenolic materials with a pH-responsive disassembly profile suitable for drug delivery. Engineered particles, such as hollow capsules, mesoporous and core-shell particles, and self-assembled nanoparticles are some of the systems that are covered to highlight how polyphenols interact with other building blocks and therefore make up the major focus of this Account. Some of the applications of these materials exemplified in this Account include drug delivery, catalysis, environmental remediation, and forensics. Finally, a perspective is provided on the current challenges and trends in polyphenol-mediated particle assembly, and viable near-term strategies for further elucidating the interplay of various competing interactions in particle formation are discussed. This Account is also expected to serve as a reference to guide fundamental research and facilitate the rational design of polyphenol-based materials for diverse emerging applications.

17.
Angew Chem Int Ed Engl ; 59(36): 15618-15625, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115863

RESUMO

Functional materials composed of proteins have attracted much interest owing to the inherent and diverse functionality of proteins. However, establishing general techniques for assembling proteins into nanomaterials is challenging owing to the complex physicochemical nature and potential denaturation of proteins. Here, a simple, versatile strategy is introduced to fabricate functional protein assemblies through the interfacial assembly of proteins and polyphenols (e.g., tannic acid) on various substrates (organic, inorganic, and biological). The dominant interactions (hydrogen-bonding, hydrophobic, and ionic) between the proteins and tannic acid were elucidated; most proteins undergo multiple noncovalent stabilizing interactions with polyphenols, which can be used to engineer responsiveness into the assemblies. The proteins retain their structure and function within the assemblies, thereby enabling their use in various applications (e.g., catalysis, fluorescence imaging, and cell targeting).

18.
Open Life Sci ; 15(1): 544-552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33817242

RESUMO

Circulating miR-150-5p has been identified as a prognostic marker in patients with critical illness and sepsis. Herein, we aimed to further explore the role and underlying mechanism of miR-150-5p in sepsis. Quantitative real-time-PCR assay was performed to detect the expression of miR-150-5p upon stimulation with lipopolysaccharide (LPS) in RAW264.7 cells. The levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-1ß were measured by ELISA assay. Cell apoptosis was determined using flow cytometry. Western blot was used to assess notch receptor 1 (Notch1) expression in LPS-induced RAW264.7 cells. Dual-luciferase reporter assay was employed to validate the target of miR-150-5p. Our data showed that miR-150-5p was downregulated and Notch1 was upregulated in LPS-stimulated RAW264.7 cells. miR-150-5p overexpression or Notch1 silencing alleviated LPS-induced inflammatory response and apoptosis in RAW264.7 cells. Moreover, Notch1 was a direct target of miR-150-5p. Notch1 abated miR-150-5p-mediated anti-inflammation and anti-apoptosis in LPS-induced RAW264.7 cells. miR-150-5p alleviated LPS-induced inflammatory response and apoptosis at least partly by targeting Notch1 in RAW264.7 cells, highlighting miR-150-5p as a target in the development of anti-inflammation and anti-apoptosis drugs for sepsis treatment.

19.
J Am Chem Soc ; 142(1): 335-341, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31851509

RESUMO

Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g-1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g-1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.

20.
ACS Nano ; 13(10): 11653-11664, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31573181

RESUMO

The intracellular delivery of functional nanoparticles (NPs) and the release of therapeutic payloads at a target site are central issues for biomedical applications. However, the endosomal entrapment of NPs typically results in the degradation of active cargo, leading to poor therapeutic outcomes. Current advances to promote the endosomal escape of NPs largely involve the use of polycationic polymers and cell-penetrating peptides (CPPs), which both can suffer from potential toxicity and convoluted synthesis/conjugation processes. Herein, we report the use of metal-phenolic networks (MPNs) as versatile and nontoxic coatings to facilitate the escape of NPs from endo/lysosomal compartments. The MPNs, which were engineered from the polyphenol tannic acid and FeIII or AlIII, enabled the endosomal escape of both inorganic (mesoporous silica) and organic (polystyrene and melamine resin) NPs owing to the "proton-sponge effect" arising from the buffering capacity of MPNs. Postfunctionalization of the MPN-coated NPs with low-fouling polymers did not impair the endosomal escape, indicating the modular and generalizable nature of this approach. We envisage that the ease of fabrication, versatility, low cytotoxicity, and promising endosomal escape performance displayed by the MPN coatings offer opportunities for such coatings to be used for the efficient delivery of cytoplasm-targeted therapeutics using NPs.


Assuntos
Endossomos/química , Nanopartículas/química , Polímeros/química , Compostos Férricos/química , Lisossomos/química , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA