Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171492, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458465

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons characterized by the presence of multiple benzene rings. They are ubiquitously found in the natural environment, especially in environmental pollutants, including atmospheric particulate matter, cigarette smoke, barbecue smoke, among others. PAHs can influence human health through several mechanisms, including the aryl hydrocarbon receptor (AhR) pathway, oxidative stress pathway, and epigenetic pathway. In recent years, the impact of PAHs on inflammatory skin diseases has garnered significant attention, yet many of their underlying mechanisms remain poorly understood. We conducted a comprehensive review of articles focusing on the link between PAHs and several inflammatory skin diseases, including psoriasis, atopic dermatitis, lupus erythematosus, and acne. This review summarizes the effects and mechanisms of PAHs in these diseases and discusses the prospects and potential therapeutic implications of PAHs for inflammatory skin diseases.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Dermatopatias , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
2.
J Genet Genomics ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38181896

RESUMO

Noncompaction of the ventricular myocardium (NVM), the third most diagnosed cardiomyopathy, is characterized by prominent trabeculae and intratrabecular recesses. However, the genetic etiology of 40-60% of NVM cases remains unknown. We identified two infants with NVM, in a nonconsanguineous family, with a typical clinical presentation of persistent bradycardia since the prenatal period. A homozygous missense variant (R223L) of RCAN family member 3 (RCAN3) was detected in both infants using whole-exome sequencing. In the zebrafish model, marked cardiac dysfunction was detected in rcan3 deficiency (MO-rcan3ATG-injected) and rcan-/- embryos. Developmental dysplasia of both endocardial and myocardial layers was also detected in rcan3-deficient embryos. RCAN3 R223L variant mRNAs did not rescue heart defects caused by rcan3 knockdown or knockout; however, hRCAN3 mRNA rescued these phenotypes. RNA-seq experiments showed that several genes involved in cardiomyopathies were significantly regulated through multiple signaling pathways in the rcan3-knockdown zebrafish model. In human cardiomyocytes, RCAN3 deficiency resulted in reduced proliferation and increased apoptosis, together with an abnormal mitochondrial ultrastructure. Thus, we suggest that RCAN3 is a susceptibility gene for cardiomyopathies, especially NVM and that the R223L mutation is a potential loss-of-function variant.

3.
Front Neurol ; 14: 1228218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789895

RESUMO

Pontocerebellar hypoplasia type 8(PCH8) is a rare neurodegenerative disorder, reportedly caused by pathogenic variants of the CHMP1A in autosomal recessive inheritance, and CHMP1A variants have also been implicated in other diseases, and yet none of the prenatal fetal features were reported in PCH8. In this study, we investigated the phenotype and genotype in a human subject with global developmental delay, including clinical data from the prenatal stage through early childhood. Prenatally, the mother had polyhydramnios, and the bilateral ventricles of the fetus were slightly widened. Postnatally, the infant was observed to have severely delayed psychomotor development and was incapable of visual tracking before 2 years old and could not fix on small objects. The young child had hypotonia, increased knee tendon reflex, as well as skeletal malformations, and dental crowding; she also had severe and recurrent pulmonary infections. Magnetic resonance imaging of the brain revealed a severe reduction of the cerebellum (vermis and hemispheres) and a thin corpus callosum. Through whole exome sequencing and whole genomics sequencing, we identified two novel compound heterozygous variations in CHMP1A [c.53 T > C(p.Leu18Pro)(NM_002768.5) and exon 1 deletion region (NC_000016.10:g.89656392_89674382del)]. cDNA analysis showed that the exon1 deletion region led to the impaired expression, and functional verification with zebrafish embryos using base edition indicated variant c.53 T > C (p.Leu18Pro), causing dysplasia of the cerebellum and pons. These results provide further evidence that CHMP1A variants in a recessive inheritance pattern contribute to the clinical characteristics of PCH8 and further expand our knowledge of the phenotype and genotype spectrum of PCH8.

4.
Cell Death Dis ; 13(12): 1054, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535930

RESUMO

Despite the high prevalence of Down syndrome (DS) and early identification of the cause (trisomy 21), its molecular pathogenesis has been poorly understood and specific treatments have consequently been practically unavailable. A number of medical conditions throughout the body associated with DS have prompted us to investigate its molecular etiology from the viewpoint of the embryonic organizer, which can steer the development of surrounding cells into specific organs and tissues. We established a DS zebrafish model by overexpressing the human DYRK1A gene, a highly haploinsufficient gene located at the "critical region" within 21q22. We found that both embryonic organizer and body axis were significantly impaired during early embryogenesis, producing abnormalities of the nervous, heart, visceral, and blood systems, similar to those observed with DS. Quantitative phosphoproteome analysis and related assays demonstrated that the DYRK1A-overexpressed zebrafish embryos had anomalous phosphorylation of ß-catenin and Hsp90ab1, resulting in Wnt signaling enhancement and TGF-ß inhibition. We found an uncovered ectopic molecular mechanism present in amniocytes from fetuses diagnosed with DS and isolated hematopoietic stem cells (HSCs) of DS patients. Importantly, the abnormal proliferation of DS HSCs could be recovered by switching the balance between Wnt and TGF-ß signaling in vitro. Our findings provide a novel molecular pathogenic mechanism in which ectopic Wnt and TGF-ß lead to DS physical dysplasia, suggesting potential targeted therapies for DS.


Assuntos
Síndrome de Down , Animais , Humanos , Síndrome de Down/patologia , Peixe-Zebra , Organizadores Embrionários/patologia , Via de Sinalização Wnt , Fator de Crescimento Transformador beta
5.
ACS Omega ; 7(40): 35981-35992, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249375

RESUMO

Down syndrome (DS) is the most common chromosomal condition associated with intellectual disability and is characterized by a variety of additional clinical findings. The pathogenesis of DS and the differences between the sexes are not clear. In order to identify differentially expressed proteins that might be employed as potential biological markers and elucidate the difference in pathogenesis between different genders of T21 fetuses, providing clues for individualized detection and treatment is essential. Amniocyte samples of T21 males, T21 females, CN males, and CN females were collected by amniocentesis. The quantitative value of the peptide corresponding to each sample was determined through quantitative analysis by mass spectrometry. We identified many differentially expressed proteins between T21 fetuses and CN fetuses/T21 males and CN males/T21 females and CN females/and T21 males and T21 females. These differential proteins are associated with many important biological processes and affect the development of multiple systems, including the heart, hematopoietic, immune, reproductive, and nervous systems. Our results show sex-specific modulation of protein expression and biological processes and provide new insights into sex-specific differences in the pathogenesis of DS.

6.
J Environ Manage ; 317: 115428, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649332

RESUMO

This study aimed to establish anaerobic biosystems which could tolerate high ammonia, and investigate the microbial community structure in these reactors. High-ammonia anaerobic biosystems that could tolerate 3600 mg L-1 total ammonia nitrogen (TAN) and 1000 mg L-1 free ammonia nitrogen (FAN) were successfully established. The removal efficiencies of COD and total volatile fatty acids (TVFAs) in R1 with dewatered sludge as inoculum were 68.8% and 69.2%, respectively. The maximum methane production rate reached 71.7 ± 1.0 mL CH4 L-1 d-1 at a TAN concentration of 3600 mg L-1. The three-dimension excitation-emission matrix analysis indicated that both easily degradable organics and refractory organics were removed from ADFE in R1 and R2. Functional microorganisms which could bear high ammonia were gradually enriched as TAN stress was elevated. Lysinibacillus, Coprothermobacter and Sporosarcina dominated the final bacterial community. Archaeal community transformed to hydrogenotrophic methanogen. The synergy of Coprothermobacter and Methanothermobacter undertook the organic matter degradation, and was enhanced by increasing TAN stress. This study offers new insights into anaerobic bioremediation of ammonia-rich wastewater.


Assuntos
Microbiota , Eliminação de Resíduos , Amônia , Anaerobiose , Bactérias Anaeróbias , Reatores Biológicos , Alimentos , Metano , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos/métodos
7.
Transl Cancer Res ; 11(3): 436-443, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35402186

RESUMO

Background: The role of cystic fibrosis transmembrane conductance regulator (CFTR) in hematopoiesis and adult leukemia has been demonstrated using a zebrafish model and leukemia cell lines in our previous works. Here, we continue to explore the association between CFTR and human childhood B-cell acute lymphoblastic leukemia (B-ALL). Methods: We continued to collect the peripheral blood and bone marrows of human childhood patients diagnosed with primary B-ALL as well as non-leukemia controls and isolated lymphocytes for analysis using western blotting and quantitative real-time polymerase chain reaction (qPCR) assay. Then, we used immunofluorescence, co-immunoprecipitation, western blotting, luciferase, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assays to identify the interaction of CFTR with Wnt signaling in B-ALL. Finally, we established B-ALL xenograft model in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice using SUP-B15 cells, and examined whether the CFTR inhibitor CFTR-inh172 could active against SUP-B15-Dependent B-ALL in vivo. Results: Highly expressed CFTR protein and mRNA are associated with primary childhood B-ALL patients. Aberrantly upregulated CFTR and Wnt signaling, our previously reported CFTR-Dvl2-ß-catenin pathway, is found in human childhood B-ALL patients. Interference with CFTR in B-ALL cell lines induces the downregulation of DVL2/ß-catenin and Wnt downstream target accompanied by a reduction of cell proliferation. Furthermore, B-ALL cell lines SUP-B15 cell-transplanted NOD/SCID mice treated with CFTR inhibitor CFTRinh-172 had significantly longer survival and slower leukemia progression compared with mice treated with vehicle dimethyl sulfoxide (DMSO). Conclusions: These findings demonstrate that highly expressed CFTR is associated with human childhood B-ALL and the potential of CFTR inhibitor CFTR-inh172 for the treatment of human B-ALL.

8.
Immunol Lett ; 234: 47-53, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951474

RESUMO

The number and function of T cells are abnormal as observed in cystic fibrosis (CF) patients and CF mouse models, and our previous work shows that the CFTR mutant leads to deficiency of primitive and definitive hematopoietic in zebrafish. However, the functions and underlying mechanisms of CFTR in T cell development during early embryogenesis have not been explored. Here, we report that the genetic ablation of CFTR in zebrafish resulted in abrogated embryonic T lymphopoiesis, which was ascribed to impaired thymic homing and expansion of hematopoietic stem cells (HSCs). Transcriptome analysis of isolated HSCs in zebrafish embryos at 48 hpf showed a significant alteration of key factors essential for T cell development and Wnt signaling, consistent with our previous work on CFTR regulating hematopoiesis. In brief, we uncovered the function of CFTR in embryonic T cell development and suggest that the immune deficiency of CF patients may originate from an early embryonic stage.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Linfopoese/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Via de Sinalização Wnt , Animais , Biologia Computacional/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ontologia Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Fenótipo , Peixe-Zebra
9.
Int J Dev Biol ; 64(7-8-9): 409-413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33063835

RESUMO

Cystic fibrosis (CF) is associated with the manifestation of a number of medical conditions throughout the body. This prompted us to investigate the etiology of CF from the viewpoint of the embryonic organizer, which is responsible for steering the movement of surrounding cells into specific organs and tissues. In our previous work, we found that a cftr mutant had decreased nuclear ß-catenin levels in the early embryo at 5 hours post-fertilization (hpf), when the organizer forms. It is known that nuclear ß-catenin signaling is essential for the induction of the dorsal organizer. Therefore, we explored the role of cftr in the formation of the embryonic organizer in this work. Indeed, the expression of organizer and germ layer markers was significantly affected in cftr mutant embryos dependent on Wnt/ß-catenin signaling. Furthermore, quantitative proteome analysis revealed that the cftr mutant induced significant alteration in the expression of proteins related to many critical biological processes, cellular components, molecular functions, and signaling pathways, except for the Wnt/ß-catenin pathway. These findings demonstrate the function of cftr in embryonic organizer formation and provide an explanation for why many abnormalities occur in the bodies of CF patients.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Embrião não Mamífero/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Proteoma/genética , Via de Sinalização Wnt/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
Mech Dev ; 163: 103627, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574800

RESUMO

Mutations in the CFTR gene cause cystic fibrosis (CF) with myocardial dysfunction. However, it remains unknown whether CF-related heart disease is a secondary effect of pulmonary disease, or an intrinsic primary defect in the heart. Here, we used zebrafish, which lack lung tissue, to investigate the role of CFTR in cardiogenesis. Our findings demonstrated that the loss of CFTR impairs cardiac development from the cardiac progenitor stage, resulting in cardiac looping defects, a dilated atrium, pericardial edema, and a decrease in heart rate. Furthermore, we found that cardiac development was perturbed in wild-type embryos treated with a gating-specific CFTR channel inhibitor, CFTRinh-172, at the blastula stage of development, but not at later stages. Gene expression analysis of blastulas indicated that transcript levels, including mRNAs associated with cardiovascular diseases, were significantly altered in embryos derived from cftr mutants relative to controls. To evaluate the role of CFTR in human heart failure, we performed a genetic association study on individuals with dilated cardiomyopathy and found that the I556V mutation in CFTR, which causes a channel defect, was associated with the disease. Similar to other well-studied channel-defective CFTR mutants, CFTR I556V mRNA failed to restore cardiac dysplasia in mutant embryos. The present study revealed an important role for the CFTR ion channel in regulating cardiac development during early embryogenesis, supporting the hypothesis that CF-related heart disease results from an intrinsic primary defect in the heart.


Assuntos
Cardiomiopatia Dilatada/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Coração/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiopatologia , Desenvolvimento Embrionário/genética , Coração/fisiopatologia , Humanos , Mutação/genética , Peixe-Zebra/crescimento & desenvolvimento
11.
Leuk Res ; 86: 106225, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31541940

RESUMO

Our previous studies have demonstrated that a previously unrecognized role of CFTR in hematopoiesis and acute leukemia. Here, we show that CFTR inhibitor CFTR-inh172 possesses ability to inhibit human T-cell acute lymphoblastic leukemia cells. In detail, CFTR-inh172 inhibited cell proliferation, promoted apoptosis and arrested the cell cycle in human T-cell acute lymphoblastic leukemia cell CCRF-CEM, JURKAT and MOLT-4. Furthermore, transcriptome analysis reveals that CFTR-inh172 induces significant alteration of gene expression related to apoptosis and proliferation. These findings demonstrate the potential of CFTR inhibitor CFTR-inh172 in human T-cell acute lymphoblastic leukemia treatment.


Assuntos
Apoptose/efeitos dos fármacos , Benzoatos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Tiazolidinas/farmacologia , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Transdução de Sinais , Transcriptoma , Células Tumorais Cultivadas
12.
Bioresour Technol ; 277: 27-36, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30658333

RESUMO

Advanced nutrient removal of municipal wastewater has insufficient carbon source, and resource recovery is neglected. In this study, a single-stage biofilter based on denitrifying phosphorus removal (DPR) was proposed for advanced nutrient removal and phosphorus recovery, which was operated under alternating anoxic/anaerobic mode with no extracellular carbon source in anoxic period. The results showed that the biofilter achieved efficient and stable performance with low carbon consumption (C/N ≈ 3.7). The average removal efficiency of NO3--N, TN and PO43--P were 74.81%, 71.08% and 91.15%, respectively. DPR primarily occurred in the middle of the filtration bed and nutrient removal was driven by intracellular polymers, which was the main carbon source. High-throughput sequencing indicated that Dechloromonas was enriched and contributed to DPR while Zoogloea was responsible for endogenous denitrification. Denitrifying polyphosphate accumulating organisms and endogenous denitrifiers synergistically enhanced the nutrient removal capacity. The study further provides research perspectives for improving nutrient removal.


Assuntos
Carbono/metabolismo , Nutrientes/isolamento & purificação , Fósforo/isolamento & purificação , Reatores Biológicos , Desnitrificação , Espaço Intracelular/metabolismo , Fósforo/metabolismo , Polifosfatos/metabolismo
13.
Water Res ; 151: 20-30, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579051

RESUMO

Phosphate (PO43--P) and nitrate (NO3--N) in the effluent of wastewater treatment plants are the predominant sources of eutrophication. In this study, a bench-scale electrochemically assisted vertical flow constructed wetland (E-VFCW) was developed, which exhibited favorable PO43--P (89.7-99.4%), NO3--N (82.7-99.6%), and TN (51.9-93.7%) removal efficiency in tertiary wastewater treatment. In addition, little N2O accumulation (0.32-2.19% of △NO3--N) was observed. The study further elucidated that PO43--P was removed mainly in the anode chamber by co-precipitation (Fe(n+)OH-PO4) and adsorption (FeOOH-PO4) pathways. Multi-pathway of NO3--N reduction was proposed, with 13.9-30.2% of NO3--N predominantly eliminated in the anode chamber by ferrous-dependent NO3--N reduction bacteria. In the cathode chamber, electrons storage and resupply modes during S cycle exerted crucial roles in NO3--N reduction, which enhanced the resilience capabilities of the E-VFCW to shock loadings. Stoichiometric analysis revealed that 3.3-6.6 mmol e-/cycle were stored in the form of S0, FeS, and FeS2 in the E-VFCW under longer HRT or higher current density. However, the deposited S resupplied 19.6% and 28.3% of electrons for NO3--N reduction under shorter HRT (1 h) or lower current density (0.01 mA cm-2). Moreover, ferrous-driven NO3--N-reducing or DNRA bacteria also promoted NO3--N elimination in the cathode chamber. These findings provide new insight into the coupling interactions among S, Fe and H cycles, as well as N and P transformations in electrochemically assisted NO3--N reduction systems.


Assuntos
Fósforo , Águas Residuárias , Desnitrificação , Ferro , Nitrogênio , Enxofre , Eliminação de Resíduos Líquidos , Áreas Alagadas
14.
Reproduction ; 156(3): 261-268, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29930176

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affect fertility in both sexes. However, the involvement of CFTR in regulating germ cell development remains largely unknown. Here, we used zebrafish model to investigate the role of CFTR in primordial germ cells (PGCs) development. We generated a cftr frameshift mutant zebrafish line using CRISPR/Cas9 technique and investigated the migration of PGCs during early embryo development. Our results showed that loss of Cftr impairs the migration of PGCs from dome stages onward. The migration of PGCs was also perturbed by treatment of CFTRinh-172, a gating-specific CFTR channel inhibitor. Moreover, defected PGCs migration in cftr mutant embryos can be partially rescued by injection of WT but not other channel-defective mutant cftr mRNAs. Finally, we observed the elevation of cxcr4b, cxcl12a, rgs14a and ca15b, key factors involved in zebrafish PGCs migration, in cftr-mutant zebrafish embryos. Taken together, the present study revealed an important role of CFTR acting as an ion channel in regulating PGCs migration during early embryogenesis. Defect of which may impair germ cell development through elevation of key factors involved in cell motility and response to chemotactic gradient in PGCs.


Assuntos
Movimento Celular/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Embrião não Mamífero/fisiologia , Células Germinativas/fisiologia , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Desenvolvimento Embrionário , Mutação da Fase de Leitura , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
15.
Cell Death Dis ; 9(3): 275, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449653

RESUMO

Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF) with a multitude of clinical manifestations. Some CF patients develop clinically significant anemia, suggesting that CFTR may regulate hematopoiesis. Here, we report that cftr mutant zebrafish model exhibits primitive and definitive hematopoietic defects with impaired Wnt signaling. Cftr is found to interact, via its PDZ-binding domain (PDZBD), with Dishevelled (Dvl), a key component of Wnt signaling required for hematopoietic progenitor specification, thus protecting Dvl from Dapper1 (Dpr1)-induced lysosomal degradation. Defective hematopoiesis and impaired Wnt signaling in cftr mutant can be rescued by overexpression of wild-type or channel function-defective G551D mutant CFTR with an intact PDZBD, but not Cftr with mutations in the PDZBD. Analysis of human database ( http://r2.amc.nl ) shows that CFTR is positively correlated with DVL2 and Wnt-related hematopoietic factors in human blood system. The results reveal a previously unrecognized role of CFTR, which is independent of its channel function, in regulating DVL degradation and thus Wnt signaling required for hematopoiesis in both zebrafish and humans, providing an explanation for the anemic phenotype of CF patients.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Hematopoese , Proteínas de Membrana/metabolismo , Mutação , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Domínios PDZ , Proteólise , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA