Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38815584

RESUMO

The early mechanisms of spontaneous tumor initiation that precede malignancy are largely unknown. We show that reduced aPKC levels correlate with stem cell loss and the induction of revival and metaplastic programs in serrated- and conventional-initiated premalignant lesions, which is perpetuated in colorectal cancers (CRCs). Acute inactivation of PKCλ/ι in vivo and in mouse organoids is sufficient to stimulate JNK in non-transformed intestinal epithelial cells (IECs), which promotes cell death and the rapid loss of the intestinal stem cells (ISCs), including those that are LGR5+. This is followed by the accumulation of revival stem cells (RSCs) at the bottom of the crypt and fetal-metaplastic cells (FMCs) at the top, creating two spatiotemporally distinct cell populations that depend on JNK-induced AP-1 and YAP. These cell lineage changes are maintained during cancer initiation and progression and determine the aggressive phenotype of human CRC, irrespective of their serrated or conventional origin.

2.
Nat Commun ; 14(1): 8075, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092754

RESUMO

The metabolic and signaling pathways regulating aggressive mesenchymal colorectal cancer (CRC) initiation and progression through the serrated route are largely unknown. Although relatively well characterized as BRAF mutant cancers, their poor response to current targeted therapy, difficult preneoplastic detection, and challenging endoscopic resection make the identification of their metabolic requirements a priority. Here, we demonstrate that the phosphorylation of SCAP by the atypical PKC (aPKC), PKCλ/ι promotes its degradation and inhibits the processing and activation of SREBP2, the master regulator of cholesterol biosynthesis. We show that the upregulation of SREBP2 and cholesterol by reduced aPKC levels is essential for controlling metaplasia and generating the most aggressive cell subpopulation in serrated tumors in mice and humans. Since these alterations are also detected prior to neoplastic transformation, together with the sensitivity of these tumors to cholesterol metabolism inhibitors, our data indicate that targeting cholesterol biosynthesis is a potential mechanism for serrated chemoprevention.


Assuntos
Proteína Quinase C , Transdução de Sinais , Animais , Humanos , Camundongos , Transformação Celular Neoplásica/genética , Colesterol , Células Epiteliais/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
3.
Cancer Cell ; 41(2): 252-271.e9, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36525970

RESUMO

Mesenchymal colorectal cancer (mCRC) is microsatellite stable (MSS), highly desmoplastic, with CD8+ T cells excluded to the stromal periphery, resistant to immunotherapy, and driven by low levels of the atypical protein kinase Cs (aPKCs) in the intestinal epithelium. We show here that a salient feature of these tumors is the accumulation of hyaluronan (HA) which, along with reduced aPKC levels, predicts poor survival. HA promotes epithelial heterogeneity and the emergence of a tumor fetal metaplastic cell (TFMC) population endowed with invasive cancer features through a network of interactions with activated fibroblasts. TFMCs are sensitive to HA deposition, and their metaplastic markers have prognostic value. We demonstrate that in vivo HA degradation with a clinical dose of hyaluronidase impairs mCRC tumorigenesis and liver metastasis and enables immune checkpoint blockade therapy by promoting the recruitment of B and CD8+ T cells, including a proportion with resident memory features, and by blocking immunosuppression.


Assuntos
Neoplasias Colorretais , Ácido Hialurônico , Microambiente Tumoral , Humanos , Linfócitos T CD8-Positivos/patologia , Neoplasias Colorretais/patologia , Ácido Hialurônico/metabolismo , Imunoterapia , Sarcoma/patologia , Microambiente Tumoral/fisiologia
4.
Cell Rep ; 39(6): 110792, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545049

RESUMO

Reduced p62 levels are associated with the induction of the cancer-associated fibroblast (CAF) phenotype, which promotes tumorigenesis in vitro and in vivo through inflammation and metabolic reprogramming. However, how p62 is downregulated in the stroma fibroblasts by tumor cells to drive CAF activation is an unresolved central issue in the field. Here we show that tumor-secreted lactate downregulates p62 transcriptionally through a mechanism involving reduction of the NAD+/NADH ratio, which impairs poly(ADP-ribose)-polymerase 1 (PARP-1) activity. PARP-1 inhibition blocks the poly(ADP-ribosyl)ation of the AP-1 transcription factors, c-FOS and c-JUN, which is an obligate step for p62 downregulation. Importantly, restoring p62 levels in CAFs by NAD+ renders CAFs less active. PARP inhibitors, such as olaparib, mimick lactate in the reduction of stromal p62 levels, as well as the subsequent stromal activation both in vitro and in vivo, which suggests that therapies using olaparib would benefit from strategies aimed at inhibiting CAF activity.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Ácido Láctico/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo
5.
Trends Cell Biol ; 32(12): 1023-1034, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35501226

RESUMO

Nononcogenic cancer drivers often impinge on complex signals that create new addictions and vulnerabilities. Protein kinase Cλ/ι (PKCλ/ι) suppresses tumorigenesis by blocking metabolic pathways that regulate fuel oxidation and create building blocks for the epigenetic control of cell differentiation. Reduced levels of PKCλ/ι unleash these pathways to promote tumorigenesis, but the simultaneous activation of the STING-driven interferon cascade prevents tumor initiation by triggering immunosurveillance mechanisms. However, depending on the context of other signaling pathways, such as WNT/ß-catenin or PKCζ, and timing, PKCλ/ι deletion can promote or inhibit tumorigenesis. In this review, we discuss in detail the molecular and cellular underpinnings of PKCλ/ι functions in cancer with the perspective of the crosstalk between metabolism and inflammation in the tumor microenvironment.


Assuntos
Isoenzimas , Neoplasias , Humanos , Isoenzimas/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Neoplasias/genética , Transformação Celular Neoplásica/patologia , Microambiente Tumoral
6.
Mol Cell ; 81(21): 4509-4526.e10, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34560002

RESUMO

The interferon (IFN) pathway is critical for cytotoxic T cell activation, which is central to tumor immunosurveillance and successful immunotherapy. We demonstrate here that PKCλ/ι inactivation results in the hyper-stimulation of the IFN cascade and the enhanced recruitment of CD8+ T cells that impaired the growth of intestinal tumors. PKCλ/ι directly phosphorylates and represses the activity of ULK2, promoting its degradation through an endosomal microautophagy-driven ubiquitin-dependent mechanism. Loss of PKCλ/ι results in increased levels of enzymatically active ULK2, which, by direct phosphorylation, activates TBK1 to foster the activation of the STING-mediated IFN response. PKCλ/ι inactivation also triggers autophagy, which prevents STING degradation by chaperone-mediated autophagy. Thus, PKCλ/ι is a hub regulating the IFN pathway and three autophagic mechanisms that serve to maintain its homeostatic control. Importantly, single-cell multiplex imaging and bioinformatics analysis demonstrated that low PKCλ/ι levels correlate with enhanced IFN signaling and good prognosis in colorectal cancer patients.


Assuntos
Neoplasias Colorretais/metabolismo , Interferons/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autofagia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Colorretais/mortalidade , Cicloeximida/química , Feminino , Células HEK293 , Humanos , Imunofenotipagem , Fator Regulador 3 de Interferon/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Fosforilação , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição , Regulação para Cima
7.
Dev Cell ; 56(1): 95-110.e10, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33207226

RESUMO

Cancer-associated fibroblasts (CAFs) promote tumor malignancy, but the precise transcriptional mechanisms regulating the acquisition of the CAF phenotype are not well understood. We show that the upregulation of SOX2 is central to this process, which is repressed by protein kinase Cζ (PKCζ). PKCζ deficiency activates the reprogramming of colonic fibroblasts to generate a predominant SOX2-dependent CAF population expressing the WNT regulator Sfrp2 as its top biomarker. SOX2 directly binds the Sfrp1/2 promoters, and the inactivation of Sox2 or Sfrp1/2 in CAFs impaired the induction of migration and invasion of colon cancer cells, as well as their tumorigenicity in vivo. Importantly, recurrence-free and overall survival of colorectal cancer (CRC) patients negatively correlates with stromal PKCζ levels. Also, SOX2 expression in the stroma is associated with CRC T invasion and worse prognosis of recurrence-free survival. Therefore, the PKCζ-SOX2 axis emerges as a critical step in the control of CAF pro-tumorigenic potential.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase C/deficiência , Fatores de Transcrição SOXB1/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Invasividade Neoplásica/genética , Organoides/metabolismo , Organoides/patologia , Ligação Proteica , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , RNA-Seq , Recidiva , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Análise de Célula Única , Regulação para Cima , beta Catenina/genética , beta Catenina/metabolismo
8.
Cancer Cell ; 38(2): 247-262.e11, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589943

RESUMO

Oxidative stress plays a critical role in liver tissue damage and in hepatocellular carcinoma (HCC) initiation and progression. However, the mechanisms that regulate autophagy and metabolic reprogramming during reactive oxygen species (ROS) generation, and how ROS promote tumorigenesis, still need to be fully understood. We show that protein kinase C (PKC) λ/ι loss in hepatocytes promotes autophagy and oxidative phosphorylation. This results in ROS generation, which through NRF2 drives HCC through cell-autonomous and non-autonomous mechanisms. Although PKCλ/ι promotes tumorigenesis in oncogene-driven cancer models, emerging evidence demonstrate that it is a tumor suppressor in more complex carcinogenic processes. Consistently, PKCλ/ι levels negatively correlate with HCC histological tumor grade, establishing this kinase as a tumor suppressor in liver cancer.


Assuntos
Autofagia/genética , Carcinoma Hepatocelular/genética , Isoenzimas/genética , Neoplasias Hepáticas/genética , Fator 2 Relacionado a NF-E2/genética , Fosforilação Oxidativa , Proteína Quinase C/genética , Interferência de RNA , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Células HEK293 , Células Hep G2 , Humanos , Isoenzimas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Quinase C/metabolismo
9.
Cancer Cell ; 35(3): 385-400.e9, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30827887

RESUMO

Increasingly effective therapies targeting the androgen receptor have paradoxically promoted the incidence of neuroendocrine prostate cancer (NEPC), the most lethal subtype of castration-resistant prostate cancer (PCa), for which there is no effective therapy. Here we report that protein kinase C (PKC)λ/ι is downregulated in de novo and during therapy-induced NEPC, which results in the upregulation of serine biosynthesis through an mTORC1/ATF4-driven pathway. This metabolic reprogramming supports cell proliferation and increases intracellular S-adenosyl methionine (SAM) levels to feed epigenetic changes that favor the development of NEPC characteristics. Altogether, we have uncovered a metabolic vulnerability triggered by PKCλ/ι deficiency in NEPC, which offers potentially actionable targets to prevent therapy resistance in PCa.


Assuntos
Carcinoma Neuroendócrino/patologia , Regulação para Baixo , Isoenzimas/deficiência , Neoplasias da Próstata/patologia , Proteína Quinase C/deficiência , Serina/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Vias Biossintéticas , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , S-Adenosilmetionina/metabolismo
10.
Cell Metab ; 26(6): 817-829.e6, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28988820

RESUMO

Tumors undergo nutrient stress and need to reprogram their metabolism to survive. The stroma may play a critical role in this process by providing nutrients to support the epithelial compartment of the tumor. Here we show that p62 deficiency in stromal fibroblasts promotes resistance to glutamine deprivation by the direct control of ATF4 stability through its p62-mediated polyubiquitination. ATF4 upregulation by p62 deficiency in the stroma activates glucose carbon flux through a pyruvate carboxylase-asparagine synthase cascade that results in asparagine generation as a source of nitrogen for stroma and tumor epithelial proliferation. Thus, p62 directly targets nuclear transcription factors to control metabolic reprogramming in the microenvironment and repress tumorigenesis, and identifies ATF4 as a synthetic vulnerability in p62-deficient tumor stroma.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Glutamina/deficiência , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Microambiente Tumoral , Fator 4 Ativador da Transcrição/genética , Animais , Asparagina/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Glucose/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas de Ligação a RNA/genética , Células Estromais/metabolismo , Ubiquitinação
12.
Cancer Cell ; 29(6): 935-948, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27211490

RESUMO

p62 is a ubiquitin-binding autophagy receptor and signaling protein that accumulates in premalignant liver diseases and most hepatocellular carcinomas (HCCs). Although p62 was proposed to participate in the formation of benign adenomas in autophagy-deficient livers, its role in HCC initiation was not explored. Here we show that p62 is necessary and sufficient for HCC induction in mice and that its high expression in non-tumor human liver predicts rapid HCC recurrence after curative ablation. High p62 expression is needed for activation of NRF2 and mTORC1, induction of c-Myc, and protection of HCC-initiating cells from oxidative stress-induced death.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células-Tronco Neoplásicas/citologia , Proteína Sequestossoma-1/genética , Regulação para Cima , Animais , Carcinoma Hepatocelular/patologia , Sobrevivência Celular , Dietilnitrosamina/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/genética , Fator 2 Relacionado a NF-E2/genética , Neoplasias Experimentais , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Serina-Treonina Quinases TOR/genética
13.
Cell Rep ; 12(8): 1339-52, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26279575

RESUMO

The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation.


Assuntos
Aminoácidos/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/metabolismo , Neoplasias da Próstata/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autofagia , Linhagem Celular , Proteínas de Choque Térmico/metabolismo , Humanos , Lisossomos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Transporte Proteico , Proteína Sequestossoma-1 , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação , Regulação para Cima
14.
Cell Rep ; 10(5): 740-754, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660024

RESUMO

Intestinal epithelial homeostasis requires continuous renewal supported by stem cells located in the base of the crypt. Disruption of this balance results in failure to regenerate and initiates tumorigenesis. The ß-catenin and Yap pathways in Lgr5+ stem cells have been shown to be central to this process. However, the precise mechanisms by which these signaling molecules are regulated in the stem cell population are not totally understood. Protein kinase C ζ (PKCζ) has been previously demonstrated to be a negative regulator of intestinal tumorigenesis. Here, we show that PKCζ suppresses intestinal stem cell function by promoting the downregulation of ß-catenin and Yap through direct phosphorylation. PKCζ deficiency results in increased stem cell activity in organoid cultures and in vivo, accounting for the increased tumorigenic and regenerative activity response of Lgr5+-specific PKCζ-deficient mice. This demonstrates that PKCζ is central to the control of stem cells in intestinal cancer and homeostasis.

15.
Cell Metab ; 20(3): 499-511, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25043814

RESUMO

The c-Jun NH(2)-terminal kinase (JNK) is a critical determinant of obesity-associated inflammation and glucose intolerance. The upstream mechanisms controlling this pathway are still unknown. Here we report that the levels of the PB1 domain-containing adaptor NBR1 correlated with the expression of proinflammatory molecules in adipose tissue from human patients with metabolic syndrome, suggesting that NBR1 plays a key role in adipose-tissue inflammation. We also show that NBR1 inactivation in the myeloid compartment impairs the function, M1 polarization, and chemotactic activity of macrophages; prevents inflammation of adipose tissue; and improves glucose tolerance in obese mice. Furthermore, we demonstrate that an interaction between the PB1 domains of NBR1 and the mitogen-activated kinase kinase 3 (MEKK3) enables the formation of a signaling complex required for the activation of JNK. Together, these discoveries identify an NBR1-MEKK3 complex as a key regulator of JNK signaling and adipose tissue inflammation in obesity.


Assuntos
Tecido Adiposo/imunologia , Inflamação/complicações , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , MAP Quinase Quinase Quinase 3/imunologia , Obesidade/complicações , Proteínas/imunologia , Tecido Adiposo/patologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Feminino , Deleção de Genes , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinase 3/química , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Dados de Sequência Molecular , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Proteínas/química , Proteínas/genética , Alinhamento de Sequência
16.
Mol Cell ; 51(3): 283-96, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23911927

RESUMO

The ability of cells to respond to changes in nutrient availability is critical for an adequate control of metabolic homeostasis. Mammalian target of rapamycin complex 1 (mTORC1) is a central complex kinase in these processes. The signaling adaptor p62 binds raptor, and integral component of the mTORC1 pathway. p62 interacts with TNF receptor associated factor 6 (TRAF6) and is required for mTORC1 translocation to the lysosome and its subsequent activation. Here we show that TRAF6 is recruited to and activates mTORC1 through p62 in amino acid-stimulated cells. We also show that TRAF6 is necessary for the translocation of mTORC1 to the lysosomes and that the TRAF6-catalyzed K63 ubiquitination of mTOR regulates mTORC1 activation by amino acids. TRAF6, through its interaction with p62 and activation of mTORC1, modulates autophagy and is an important mediator in cancer cell proliferation. Interfering with the p62-TRAF6 interaction serves to modulate autophagy and nutrient sensing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico/metabolismo , Complexos Multiproteicos/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/fisiologia , Transporte Biológico , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Células HEK293 , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Mutação , NF-kappa B/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteína Sequestossoma-1 , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
17.
Mol Cell Biol ; 31(1): 105-17, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974803

RESUMO

The protein scaffold and signaling regulator p62 is important in critical cellular functions, including bone homeostasis, obesity, and cancer, because of its interactions with various signaling intermediaries. p62 is overexpressed in human cancers and is induced during cell transformation. Its genetic ablation inhibits lung tumorigenesis in vivo and cell proliferation in culture by regulating the TRAF6/NF-κB signaling cascade to control reactive oxygen species (ROS) production and apoptosis. Here we show that cdk1 phosphorylates p62 in vitro and in vivo at T269 and S272, which is necessary for the maintenance of appropriate cyclin B1 levels and the levels of cdk1 activity necessary to allow cells to properly enter and exit mitosis. The lack of cdk1-mediated phosphorylation of p62 leads to a faster exit from mitosis, which translates into enhanced cell proliferation and tumorigenesis in response to Ras-induced transformation. Therefore, p62 emerges as a node for the control of not only cell survival but also cell transit through mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Transformação Celular Neoplásica/metabolismo , Mitose/fisiologia , Fosfoproteínas/metabolismo , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína Quinase CDC2/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Cultivadas , Ciclina B1/metabolismo , Genes ras , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Mitose/genética , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Espectrometria de Massas em Tandem , Fator de Transcrição TFIIH , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/genética , Transfecção
18.
Cell Metab ; 12(1): 65-77, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20620996

RESUMO

Obesity-induced inflammation is critical for the development of insulin resistance. Here, we show that genetic inactivation of PKCzeta in vivo leads to a hyperinflammatory state in obese mice that correlates with a higher glucose intolerance and insulin resistance. Previous studies implicated PKCzeta in the regulation of type 2 inflammatory responses in T cells. By using ex vivo and in vivo experiments, we demonstrate that although PKCzeta is involved in the alternative (M2) activation of macrophages, surprisingly, PKCzeta ablation in the nonhematopoietic compartment but not in the hematopoietic system is sufficient to drive inflammation and IL-6 synthesis in the adipose tissue, as well as insulin resistance. Experiments using PKCzeta/IL-6 double-knockout mice demonstrated that IL-6 production accounts for obesity-associated glucose intolerance induced by PKCzeta deficiency. These results establish PKCzeta as a critical negative regulator of IL-6 in the control of obesity-induced inflammation in adipocytes.


Assuntos
Intolerância à Glucose/etiologia , Inflamação/etiologia , Obesidade/complicações , Proteína Quinase C/metabolismo , Tecido Adiposo/metabolismo , Animais , Resistência à Insulina , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Proteína Quinase C/genética
19.
Mol Cell Biol ; 29(1): 104-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18955501

RESUMO

Gene alterations in tumor cells that confer the ability to grow under nutrient- and mitogen-deficient conditions constitute a competitive advantage that leads to more-aggressive forms of cancer. The atypical protein kinase C (PKC) isoform, PKCzeta, has been shown to interact with the signaling adapter p62, which is important for Ras-induced lung carcinogenesis. Here we show that PKCzeta-deficient mice display increased Ras-induced lung carcinogenesis, suggesting a new role for this kinase as a tumor suppressor in vivo. We also show that Ras-transformed PKCzeta-deficient lungs and embryo fibroblasts produced more interleukin-6 (IL-6), which we demonstrate here plays an essential role in the ability of Ras-transformed cells to grow under nutrient-deprived conditions in vitro and in a mouse xenograft system in vivo. We also show that PKCzeta represses histone acetylation at the C/EBPbeta element in the IL-6 promoter. Therefore, PKCzeta, by controlling the production of IL-6, is a critical signaling molecule in tumorigenesis.


Assuntos
Interleucina-6/genética , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Regiões Promotoras Genéticas/genética , Proteína Quinase C/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Genes ras , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteína Quinase C/deficiência , Soro , Transcrição Gênica
20.
EMBO J ; 27(16): 2181-93, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18650932

RESUMO

The atypical PKC-interacting protein, Par-4, inhibits cell survival and tumorigenesis in vitro, and its genetic inactivation in mice leads to reduced lifespan, enhanced benign tumour development and low-frequency carcinogenesis. Here, we demonstrate that Par-4 is highly expressed in normal lung but reduced in human lung cancer samples. We show, in a mouse model of lung tumours, that the lack of Par-4 dramatically enhances Ras-induced lung carcinoma formation in vivo, acting as a negative regulator of Akt activation. We also demonstrate in cell culture, in vivo, and in biochemical experiments that Akt regulation by Par-4 is mediated by PKCzeta, establishing a new paradigm for Akt regulation and, likely, for Ras-induced lung carcinogenesis, wherein Par-4 is a novel tumour suppressor.


Assuntos
Neoplasias Pulmonares/enzimologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Trombina/metabolismo , Animais , Linhagem Celular , Núcleo Celular/enzimologia , Ativação Enzimática , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/enzimologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , Receptores de Trombina/deficiência , Receptores de Trombina/genética , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA