Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626031

RESUMO

Consensus guidelines for hereditary breast and ovarian cancer include management recommendations for pathogenic/likely pathogenic (P/LP) variants in ATM, CHEK2, PALB2, and other DNA damage repair (DDR) genes beyond BRCA1 or BRCA2. We report on clinical management decisions across three academic medical centers resulting from P/LP findings in DDR genes in breast/ovarian cancer patients. Among 2184 patients, 156 (7.1%) carried a P/LP variant in a DDR gene. Clinical follow-up information was available for 101/156 (64.7%) patients. Genetic test result-based management recommendations were made for 57.8% (n = 59) of patients and for 64.7% (n = 66) of patients' family members. Most recommendations were made for moderate-to-high risk genes and were consistent with guidelines. Sixty-six percent of patients (n = 39/59) implemented recommendations. This study suggests that P/LP variants in DDR genes beyond BRCA1 and BRCA2 can change clinical management recommendations for patients and their family members, facilitate identification of new at-risk carriers, and impact treatment decisions. Additional efforts are needed to improve the implementation rates of genetic-testing-based management recommendations for patients and their family members.

2.
Genet Med ; 23(9): 1673-1680, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34007000

RESUMO

PURPOSE: To evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small copy-number variants (CNVs), complex alterations, and variants in low-complexity or segmentally duplicated regions. METHODS: An interlaboratory pilot study used synthetic specimens to assess detection of challenging variant types by various next-generation sequencing (NGS)-based workflows. One well-performing workflow was further validated and used in clinician-ordered testing of more than 450,000 patients. RESULTS: In the interlaboratory study, only 2 of 13 challenging variants were detected by all 10 workflows, and just 3 workflows detected all 13. Limitations were also observed among 11 less-challenging indels. In clinical testing, 21.6% of patients carried one or more pathogenic variants, of which 13.8% (17,561) were classified as technically challenging. These variants were of diverse types, affecting 556 of 1,217 genes across hereditary cancer, cardiovascular, neurological, pediatric, reproductive carrier screening, and other indicated tests. CONCLUSION: The analytic and clinical sensitivity of NGS workflows can vary considerably, particularly for prevalent, technically challenging variants. This can have important implications for the design and validation of tests (by laboratories) and the selection of tests (by clinicians) for a wide range of clinical indications.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Criança , Variações do Número de Cópias de DNA/genética , Humanos , Mutação INDEL/genética , Projetos Piloto
3.
JAMA Netw Open ; 3(10): e2019452, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026450

RESUMO

Importance: Both germline genetic testing and tumor DNA sequencing are increasingly used in cancer care. The indications for testing and utility of these 2 tests differ, and guidelines recommend that germline analysis follow tumor sequencing in certain patients to determine whether particular variants are of somatic or germline origin. Broad clinical experience with such follow-up testing has not yet been thoroughly described. Objective: To examine the yield and utility of germline testing following tumor DNA sequencing in a large, diverse patient population. Design, Setting, and Participants: A retrospective cohort study examined germline testing through a laboratory supporting multiple academic and community clinics. Participants included 2023 patients with cancer who received germline testing and previously underwent tumor DNA sequencing. These patients received germline testing between January 5, 2015, and January 31, 2020, although most (81% of patients) received testing between January 2, 2018, and January 31, 2020. Main Outcomes and Measures: The prevalence of pathogenic germline variants (PGVs) was calculated by gene, cancer type, and age at diagnosis. Potential actionability of these findings was determined based on current management guidelines, precision therapy labels, and clinical trial eligibility criteria. Patient records were reviewed to determine whether germline follow-up testing would have been recommended by current guidelines. Results: Among 2023 eligible patients, 1085 were female (53.6%), and the median age at cancer diagnosis was 56 (range, 0-92) years. Pathogenic germline variants were detected in 617 patients (30.5%; 95% CI, 28.5%-32.6%) and were prevalent across patient ages (1-85 years) and cancer types, including cancers known to be strongly associated with germline variance (eg, breast, colorectal) as well as others (eg, renal, lung, and bladder). Many patients (78%-82%) with PGVs met criteria for germline follow-up testing, and 8.1% of PGVs were missed by tumor sequencing. Among those with germline-positive findings, 69 patients (11.2%) had PGVs identified only after presenting with a second primary cancer that possibly could have been detected earlier or prevented given current gene-specific surveillance and risk-reduction recommendations. Conclusions and Relevance: The findings of this study suggest that germline analysis following tumor sequencing often produces findings that may impact patient care by influencing systemic therapy choices, surgical decisions, additional cancer screening, and genetic counseling in families. Current guidelines and tumor testing approaches appear to capture many, but not all, of these germline findings, reinforcing the utility of both expanded germline follow-up testing as well as germline analysis independent of tumor sequencing in appropriate patients.


Assuntos
Detecção Precoce de Câncer/estatística & dados numéricos , Perfilação da Expressão Gênica/métodos , Testes Genéticos/estatística & dados numéricos , Células Germinativas/patologia , Neoplasias/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Neoplasias/terapia , Prognóstico , Estudos Retrospectivos , Medição de Risco , Adulto Jovem
4.
Genet Med ; 21(1): 114-123, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29895855

RESUMO

PURPOSE: We investigated the frequencies and characteristics of intragenic copy-number variants (CNVs) in a deep sampling of disease genes associated with monogenic disorders. METHODS: Subsets of 1507 genes were tested using next-generation sequencing to simultaneously detect sequence variants and CNVs in >143,000 individuals referred for genetic testing. We analyzed CNVs in gene panels for hereditary cancer syndromes and cardiovascular, neurological, or pediatric disorders. RESULTS: Our analysis identified 2844 intragenic CNVs in 384 clinically tested genes. CNVs were observed in 1.9% of the entire cohort but in a disproportionately high fraction (9.8%) of individuals with a clinically significant result. CNVs accounted for 4.7-35% of pathogenic variants, depending on clinical specialty. Distinct patterns existed among CNVs in terms of copy number, location, exons affected, clinical classification, and genes affected. Separately, analysis of de-identified data for 599 genes unrelated to the clinical phenotype yielded 4054 CNVs. Most of these CNVs were novel rare events, present as duplications, and enriched in genes associated with recessive disorders or lacking loss-of-function mutational mechanisms. CONCLUSION: Universal intragenic CNV analysis adds substantial clinical sensitivity to genetic testing. Clinically relevant CNVs have distinct properties that distinguish them from CNVs contributing to normal variation in human disease genes.


Assuntos
Variações do Número de Cópias de DNA/genética , Estudos de Associação Genética , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Hibridização Genômica Comparativa , Éxons/genética , Doenças Genéticas Inatas/patologia , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo
5.
Ann Surg Oncol ; 25(10): 2925-2931, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29998407

RESUMO

BACKGROUND: An estimated 5-10% of breast and ovarian cancers are due to hereditary causes such as hereditary breast and ovarian cancer (HBOC) syndrome. Medicare, the third-party payer that covers 44 million patients in the United States, has implemented a set of clinical criteria to determine coverage for the testing of the BRCA1 and BRCA2 genes. These criteria, developed to identify carriers of BRCA1/2 variants, have not been evaluated in the panel testing era. This study investigated a series of Medicare patients undergoing genetic testing for HBOC to determine the efficacy of genetic testing criteria in identifying patients with hereditary risk. METHODS: This study retrospectively examined de-identified data from a consecutive series of Medicare patients undergoing genetic testing based on personal and family history of breast and gynecologic cancer. Ordering clinicians indicated whether patients did or did not meet established criteria for BRCA1/2 genetic testing. The genetic test results were compared between the group that met the criteria and the group that did not. Patients in families with known pathogenic (P) or likely pathogenic (LP) variants were excluded from the primary analysis. RESULTS: Among 4196 unique Medicare patients, the rate of P/LP variants for the patients who met the criteria for genetic testing was 10.5%, and for those who did not, the rate was 9% (p = 0.26). CONCLUSIONS: The results of this study indicate that a substantial number of Medicare patients with clinically actionable genetic variants are being missed by current testing criteria and suggest the need for significant expansion and simplification of the testing criteria for HBOC.


Assuntos
Testes Genéticos/normas , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Erros de Diagnóstico , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Masculino , Medicare , Pessoa de Meia-Idade , Seleção de Pacientes , Estudos Retrospectivos , Resultado do Tratamento , Estados Unidos , Adulto Jovem
6.
Cancer ; 124(8): 1691-1700, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360161

RESUMO

BACKGROUND: Approximately 10% of pancreatic adenocarcinoma (PC) cases are attributed to hereditary causes. Individuals with PC and a personal history of another cancer associated with hereditary breast and ovarian cancer (HBOC) or Lynch syndrome (LS) may be more likely to carry germline mutations. METHODS: Participants with PC and a history of cancer were selected from a pancreatic disease registry. Of 1296 individuals with PC, 149 had a relevant history of cancer. If banked DNA was available, a multigene panel was performed for individuals who had not 1) previously had a mutation identified through clinical testing or 2) undergone clinical multigene panel testing with no mutations detected. RESULTS: Twenty-two of 124 individuals with PC and another HBOC- or LS-related cancer who underwent genetic testing had a mutation identified in a PC susceptibility gene (18%). If prostate cancer is excluded, the mutation prevalence increased to 23% (21/93). Mutation carriers were more likely to have more than 1 previous cancer diagnosis (P = .001), to have had clinical genetic testing (P = .001), and to meet National Comprehensive Cancer Network (NCCN) genetic testing criteria (P < .001). Approximately 23% of mutation carriers did not meet NCCN HBOC or LS testing guidelines based on their personal cancer history and reported cancer history in first-degree relatives. CONCLUSION: At least 18% of individuals with PC and a personal history of other HBOC- or LS-related cancers carry mutations in a PC susceptibility gene based on our data, suggesting that criteria for genetic testing in individuals with PC should include consideration of previous cancer history. Cancer 2018;124:1691-700. © 2018 American Cancer Society.


Assuntos
Biomarcadores Tumorais/genética , Mutação em Linhagem Germinativa , Segunda Neoplasia Primária/genética , Neoplasias Pancreáticas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais Hereditárias sem Polipose/genética , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Adulto Jovem , Neoplasias Pancreáticas
7.
JCO Precis Oncol ; 12017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28782058

RESUMO

BACKGROUND: Genetic tests of the cancer predisposition genes BRCA1 and BRCA2 inform significant clinical decisions for both physicians and patients. Most uncovered variants are benign, and determining which few are pathogenic (disease-causing) is sometimes challenging and can potentially be inconsistent among laboratories. The ClinVar database makes de-identified clinical variant classifications from multiple laboratories publicly available for comparison and review, per recommendations of the American Medical Association (AMA), the American College of Medical Genetics (ACMG), the National Society for Genetic Counselors (NSGC), and other organizations. METHODS: Classifications of more than 2000 BRCA1/2 variants in ClinVar representing approximately 22,000 patients were dichotomized as clinically actionable or not actionable and compared across up to seven laboratories. The properties of these variants and classification differences were investigated in detail. RESULTS: Per-variant concordance was 98.5% (CI 97.9%-99.0%). All discordant variants were rare; thus, per patient concordance was estimated to be higher: 99.7%. ClinVar facilitated resolution of many of the discordant variants, and concordance increased to 99.0% per variant and 99.8% per patient when reclassified (but not yet resubmitted) variants and submission errors were addressed. Most of the remaining discordances appeared to involve either legitimate differences in expert judgment regarding particular scientific evidence, or were classifications that predated availability of important scientific evidence. CONCLUSIONS: Significant classification disagreements among the professional clinical laboratories represented in ClinVar are infrequent yet important. The unrestricted sharing of clinical genetic data allows detailed interlaboratory quality control and peer review, as exemplified by this study.

8.
Genome Med ; 9(1): 13, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166811

RESUMO

BACKGROUND: The frequency of a variant in the general population is a key criterion used in the clinical interpretation of sequence variants. With certain exceptions, such as founder mutations, the rarity of a variant is a prerequisite for pathogenicity. However, defining the threshold at which a variant should be considered "too common" is challenging and therefore diagnostic laboratories have typically set conservative allele frequency thresholds. METHODS: Recent publications of large population sequencing data, such as the Exome Aggregation Consortium (ExAC) database, provide an opportunity to characterize with accuracy and precision the frequency distributions of very rare disease-causing alleles. Allele frequencies of pathogenic variants in ClinVar, as well as variants expected to be pathogenic through the nonsense-mediated decay (NMD) pathway, were analyzed to study the burden of pathogenic variants in 79 genes of clinical importance. RESULTS: Of 1364 BRCA1 and BRCA2 variants that are well characterized as pathogenic or that are expected to lead to NMD, 1350 variants had an allele frequency of less than 0.0025%. The remaining 14 variants were previously published founder mutations. Importantly, we observed no difference in the distributions of pathogenic variants expected to be lead to NMD compared to those that are not. Therefore, we expanded the analysis to examine the distributions of NMD expected variants in 77 additional genes. These 77 genes were selected to represent a broad set of clinical areas, modes of inheritance, and penetrance. Among these variants, most (97.3%) had an allele frequency of less than 0.01%. Furthermore, pathogenic variants with allele frequencies greater than 0.01% were well characterized in publications and included many founder mutations. CONCLUSIONS: The observations made in this study suggest that, with certain caveats, a very low allele frequency threshold can be adopted to more accurately interpret sequence variants.


Assuntos
Bases de Dados Genéticas , Frequência do Gene , Variação Genética , Mutação , Doenças Raras/genética , Análise Mutacional de DNA , Exoma , Humanos , Doenças Raras/epidemiologia
10.
Pac Symp Biocomput ; 22: 166-176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27896972

RESUMO

Open sharing of clinical genetic data promises to both monitor and eventually improve the reproducibility of variant interpretation among clinical testing laboratories. A significant public data resource has been developed by the NIH ClinVar initiative, which includes submissions from hundreds of laboratories and clinics worldwide. We analyzed a subset of ClinVar data focused on specific clinical areas and we find high reproducibility (>90% concordance) among labs, although challenges for the community are clearly identified in this dataset. We further review results for the commonly tested BRCA1 and BRCA2 genes, which show even higher concordance, although the significant fragmentation of data into different silos presents an ongoing challenge now being addressed by the BRCA Exchange. We encourage all laboratories and clinics to contribute to these important resources.


Assuntos
Testes Genéticos/estatística & dados numéricos , Disseminação de Informação/métodos , Biologia Computacional , Bases de Dados Genéticas/estatística & dados numéricos , Genes BRCA1 , Genes BRCA2 , Variação Genética , Humanos , National Institutes of Health (U.S.) , Reprodutibilidade dos Testes , Estados Unidos
11.
NPJ Genom Med ; 1: 16015, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29263814

RESUMO

Li-Fraumeni syndrome (LFS) is a rare cancer predisposition syndrome usually associated with TP53 germline alterations. Its genetic basis in TP53 wild-type pedigrees is less understood. Using whole-genome sequencing, we identified a germline hemizygous deletion ablating CDKN2A-CDKN2B in a TP53 wild-type patient presenting with high-grade sarcoma, laryngeal squamous cell carcinoma and a family history suggestive of LFS. Patient-derived cells demonstrated reduced basal gene and protein expression of the CDKN2A-encoded tumour suppressors p14ARF and p16INK4A with concomitant decrease in p21 and faster cell proliferation, implying potential deregulation of p53-mediated cell cycle control. Review of 13 additional patients with pathogenic CDKN2A variants suggested associations of germline CDKN2A mutations with an expanded spectrum of non-melanoma familial cancers. To our knowledge, this is the first report of a germline gross deletion of the CDKN2A-CDKN2B locus in an LFS family. These findings highlight the potential contribution of germline CDKN2A deletions to cancer predisposition and the importance of interrogating the full extent of CDKN2A locus in clinical testing gene panels.

12.
JAMA Oncol ; 1(7): 943-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26270727

RESUMO

IMPORTANCE: The practice of genetic testing for hereditary breast and/or ovarian cancer (HBOC) is rapidly evolving owing to the recent introduction of multigene panels. While these tests may identify 40% to 50% more individuals with hereditary cancer gene mutations than does testing for BRCA1/2 alone, whether finding such mutations will alter clinical management is unknown. OBJECTIVE: To define the potential clinical effect of multigene panel testing for HBOC in a clinically representative cohort. DESIGN, SETTING, AND PARTICIPANTS: Observational study of patients seen between 2001 and 2014 in 3 large academic medical centers. We prospectively enrolled 1046 individuals who were appropriate candidates for HBOC evaluation and who lacked BRCA1/2 mutations. INTERVENTIONS: We carried out multigene panel testing on all participants, then determined the clinical actionability, if any, of finding non-BRCA1/2 mutations in these and additional comparable individuals. MAIN OUTCOMES AND MEASURES: We evaluated the likelihood of (1) a posttest management change and (2) an indication for additional familial testing, considering gene-specific consensus management guidelines, gene-associated cancer risks, and personal and family history. RESULTS: Among 1046 study participants, 40 BRCA1/2-negative patients (3.8%; 95% CI, 2.8%-5.2%) harbored deleterious mutations, most commonly in moderate-risk breast and ovarian cancer genes (CHEK2, ATM, and PALB2) and Lynch syndrome genes. Among these and an additional 23 mutation-positive individuals enrolled from our clinics, most of the mutations (92%) were consistent with the spectrum of cancer(s) observed in the patient or family, suggesting that these results are clinically significant. Among all 63 mutation-positive patients, additional disease-specific screening and/or prevention measures beyond those based on personal and family history alone would be considered for most (33 [52%] of 63; 95% CI, 40.3%-64.2%). Furthermore, additional familial testing would be considered for those with first-degree relatives (42 [72%] of 58; 95% CI, 59.8%-82.2%) based on potential management changes for mutation-positive relatives. This clinical effect was not restricted to a few of the tested genes because most identified genes could change clinical management for some patients. CONCLUSIONS AND RELEVANCE: In a clinically representative cohort, multigene panel testing for HBOC risk assessment yielded findings likely to change clinical management for substantially more patients than does BRCA1/2 testing alone. Multigene testing in this setting is likely to alter near-term cancer risk assessment and management recommendations for mutation-affected individuals across a broad spectrum of cancer predisposition genes.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Análise Mutacional de DNA , Testes Genéticos/métodos , Mutação , Neoplasias Ovarianas/genética , Centros Médicos Acadêmicos , Proteína BRCA1/genética , Proteína BRCA2/genética , Boston , California , Feminino , Frequência do Gene , Aconselhamento Genético , Predisposição Genética para Doença , Hereditariedade , Humanos , Linhagem , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco
13.
J Mol Diagn ; 17(5): 533-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26207792

RESUMO

Gene panels for hereditary breast and ovarian cancer risk assessment are gaining acceptance, even though the clinical utility of these panels is not yet fully defined. Technical questions remain, however, about the performance and clinical interpretation of gene panels in comparison with traditional tests. We tested 1105 individuals using a 29-gene next-generation sequencing panel and observed 100% analytical concordance with traditional and reference data on >750 comparable variants. These 750 variants included technically challenging classes of sequence and copy number variation that together represent a significant fraction (13.4%) of the pathogenic variants observed. For BRCA1 and BRCA2, we also compared variant interpretations in traditional reports to those produced using only non-proprietary resources and following criteria based on recent (2015) guidelines. We observed 99.8% net report concordance, albeit with a slightly higher variant of uncertain significance rate. In 4.5% of BRCA-negative cases, we uncovered pathogenic variants in other genes, which appear clinically relevant. Previously unseen variants requiring interpretation accumulated rapidly, even after 1000 individuals had been tested. We conclude that next-generation sequencing panel testing can provide results highly comparable to traditional testing and can uncover potentially actionable findings that may be otherwise missed. Challenges remain for the broad adoption of panel tests, some of which will be addressed by the accumulation of large public databases of annotated clinical variants.


Assuntos
Neoplasias da Mama/genética , Genes Neoplásicos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Ovarianas/genética , Estudos de Coortes , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/métodos , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Humanos , Síndromes Neoplásicas Hereditárias/genética
14.
Cancer Res ; 74(21): 6071-81, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25189529

RESUMO

Asian nonsmoking populations have a higher incidence of lung cancer compared with their European counterparts. There is a long-standing hypothesis that the increase of lung cancer in Asian never-smokers is due to environmental factors such as second-hand smoke. We analyzed whole-genome sequencing of 30 Asian lung cancers. Unsupervised clustering of mutational signatures separated the patients into two categories of either all the never-smokers or all the smokers or ex-smokers. In addition, nearly one third of the ex-smokers and smokers classified with the never-smoker-like cluster. The somatic variant profiles of Asian lung cancers were similar to that of European origin with G.C>T.A being predominant in smokers. We found EGFR and TP53 to be the most frequently mutated genes with mutations in 50% and 27% of individuals, respectively. Among the 16 never-smokers, 69% had an EGFR mutation compared with 29% of 14 smokers/ex-smokers. Asian never-smokers had lung cancer signatures distinct from the smoker signature and their mutation profiles were similar to European never-smokers. The profiles of Asian and European smokers are also similar. Taken together, these results suggested that the same mutational mechanisms underlie the etiology for both ethnic groups. Thus, the high incidence of lung cancer in Asian never-smokers seems unlikely to be due to second-hand smoke or other carcinogens that cause oxidative DNA damage, implying that routine EGFR testing is warranted in the Asian population regardless of smoking status.


Assuntos
Dano ao DNA/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Povo Asiático/genética , Receptores ErbB/genética , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Fatores de Risco , Proteína Supressora de Tumor p53/genética
15.
J Clin Oncol ; 32(19): 2001-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24733792

RESUMO

PURPOSE: Multiple-gene sequencing is entering practice, but its clinical value is unknown. We evaluated the performance of a customized germline-DNA sequencing panel for cancer-risk assessment in a representative clinical sample. METHODS: Patients referred for clinical BRCA1/2 testing from 2002 to 2012 were invited to donate a research blood sample. Samples were frozen at -80° C, and DNA was extracted from them after 1 to 10 years. The entire coding region, exon-intron boundaries, and all known pathogenic variants in other regions were sequenced for 42 genes that had cancer risk associations. Potentially actionable results were disclosed to participants. RESULTS: In total, 198 women participated in the study: 174 had breast cancer and 57 carried germline BRCA1/2 mutations. BRCA1/2 analysis was fully concordant with prior testing. Sixteen pathogenic variants were identified in ATM, BLM, CDH1, CDKN2A, MUTYH, MLH1, NBN, PRSS1, and SLX4 among 141 women without BRCA1/2 mutations. Fourteen participants carried 15 pathogenic variants, warranting a possible change in care; they were invited for targeted screening recommendations, enabling early detection and removal of a tubular adenoma by colonoscopy. Participants carried an average of 2.1 variants of uncertain significance among 42 genes. CONCLUSION: Among women testing negative for BRCA1/2 mutations, multiple-gene sequencing identified 16 potentially pathogenic mutations in other genes (11.4%; 95% CI, 7.0% to 17.7%), of which 15 (10.6%; 95% CI, 6.5% to 16.9%) prompted consideration of a change in care, enabling early detection of a precancerous colon polyp. Additional studies are required to quantify the penetrance of identified mutations and determine clinical utility. However, these results suggest that multiple-gene sequencing may benefit appropriately selected patients.


Assuntos
Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Análise de Sequência de DNA , Adulto , Idoso , Proteína BRCA1/genética , Proteína BRCA2/genética , Detecção Precoce de Câncer , Feminino , Variação Genética , Humanos , Programas de Rastreamento , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de Risco , Comportamento de Redução do Risco
16.
N Engl J Med ; 367(9): 826-33, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22931316

RESUMO

BACKGROUND: Waldenström's macroglobulinemia is an incurable, IgM-secreting lymphoplasmacytic lymphoma (LPL). The underlying mutation in this disorder has not been delineated. METHODS: We performed whole-genome sequencing of bone marrow LPL cells in 30 patients with Waldenström's macroglobulinemia, with paired normal-tissue and tumor-tissue sequencing in 10 patients. Sanger sequencing was used to validate the findings in samples from an expanded cohort of patients with LPL, those with other B-cell disorders that have some of the same features as LPL, and healthy donors. RESULTS: Among the patients with Waldenström's macroglobulinemia, a somatic variant (T→C) in LPL cells was identified at position 38182641 at 3p22.2 in the samples from all 10 patients with paired tissue samples and in 17 of 20 samples from patients with unpaired samples. This variant predicted an amino acid change (L265P) in MYD88, a mutation that triggers IRAK-mediated NF-κB signaling. Sanger sequencing identified MYD88 L265P in tumor samples from 49 of 54 patients with Waldenström's macroglobulinemia and in 3 of 3 patients with non-IgM-secreting LPL (91% of all patients with LPL). MYD88 L265P was absent in paired normal tissue samples from patients with Waldenström's macroglobulinemia or non-IgM LPL and in B cells from healthy donors and was absent or rarely expressed in samples from patients with multiple myeloma, marginal-zone lymphoma, or IgM monoclonal gammopathy of unknown significance. Inhibition of MYD88 signaling reduced IκBα and NF-κB p65 phosphorylation, as well as NF-κB nuclear staining, in Waldenström's macroglobulinemia cells expressing MYD88 L265P. Somatic variants in ARID1A in 5 of 30 patients (17%), leading to a premature stop or frameshift, were also identified and were associated with an increased disease burden. In addition, 2 of 3 patients with Waldenström's macroglobulinemia who had wild-type MYD88 had somatic variants in MLL2. CONCLUSIONS: MYD88 L265P is a commonly recurring mutation in patients with Waldenström's macroglobulinemia that can be useful in differentiating Waldenström's macroglobulinemia and non-IgM LPL from B-cell disorders that have some of the same features. (Funded by the Peter and Helen Bing Foundation and others.).


Assuntos
Mutação , Fator 88 de Diferenciação Mieloide/genética , Macroglobulinemia de Waldenstrom/genética , Diagnóstico Diferencial , Progressão da Doença , Expressão Gênica , Genoma Humano , Humanos , Imunoglobulina M/análise , Paraproteinemias/diagnóstico , Paraproteinemias/imunologia , Análise de Sequência de DNA , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA