Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Toxicol ; 6: 1339104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654939

RESUMO

As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).

2.
Front Toxicol ; 6: 1285768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523647

RESUMO

Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.

3.
Toxicol Sci ; 129(1): 157-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22641617

RESUMO

The health of the offspring depends on the genetic constitution of the parental germ cells. The paternal genome appears to be important; e.g., de novo mutations in some genes seem to arise mostly from the father, whereas epigenetic modifications of DNA and histones are frequent in the paternal gonads. Environmental contaminants which may affect the integrity of the germ cells comprise the polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). B[a]P has received much attention due to its ubiquitous distribution, its carcinogenic and mutagenic potential, and also effects on reproduction. We conducted an in vitro fertilization (IVF) experiment using sperm cells from B[a]P-exposed male mice to study effects of paternal B[a]P exposure on early gene expression in the developing mouse embryo. Male mice were exposed to a single acute dose of B[a]P (150 mg/kg, ip) 4 days prior to isolation of cauda sperm, followed by IVF of oocytes from unexposed superovulated mice. Gene expression in fertilized zygotes/embryos was determined using reverse transcription-qPCR at the 1-, 2-, 4-, 8-, and blastocyst cell stages of embryo development. We found that paternal B[a]P exposure altered the expression of numerous genes in the developing embryo especially at the blastocyst stage. Some genes were also affected at earlier developmental stages. Embryonic gene expression studies seem useful to identify perturbations of signaling pathways resulting from exposure to contaminants, and can be used to address mechanisms of paternal effects on embryo development.


Assuntos
Benzo(a)pireno/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Exposição Paterna , Animais , Masculino , Camundongos , MicroRNAs/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mol Cancer ; 6: 53, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17711579

RESUMO

BACKGROUND: Testicular germ cell tumors (TGCTs) respond well to cisplatin-based chemotherapy and show a low incidence of acquired resistance compared to most somatic tumors. The reasons for these specific characteristics are not known in detail but seem to be multifactorial. We have studied gene expression profiles of testicular and colon cancer derived cell lines treated with cisplatin. The main goal of this study was to identify novel gene expression profiles with their functional categories and the biochemical pathways that are associated with TGCT cells' response to cisplatin. RESULTS: Genes that were differentially expressed between the TGCT cell lines vs the (somatic) HCT116 cell line, after cisplatin treatment, were identified using the significance analysis of microarrays (SAM) method. The response of TGCT cells was strikingly different from that of HCT116, and we identified 1794 genes that were differentially expressed. Functional classification of these genes showed that they participate in a variety of different and widely distributed functional categories and biochemical pathways. Database mining showed significant association of genes (n = 41) induced by cisplatin in our study, and genes previously reported to by expressed in differentiated TGCT cells. We identified 37 p53-responsive genes that were altered after cisplatin exposure. We also identified 40 target genes for two microRNAs, hsa-mir-372 and 373 that may interfere with p53 signaling in TGCTs. The tumor suppressor genes NEO1 and LATS2, and the estrogen receptor gene ESR1, all have binding sites for p53 and hsa-mir-372/373. NEO1 and LATS2 were down-regulated in TGCT cells following cisplatin exposure, while ESR1 was up-regulated in TGCT cells. Cisplatin-induced genes associated with terminal growth arrest through senescence were identified, indicating associations which were not previously described for TGCT cells. CONCLUSION: By linking our gene expression data to publicly available databases and literature, we provide a global pattern of cisplatin induced cellular response that is specific for testicular cancer cell lines. We have identified cisplatin-responsive functional classes and pathways, such as the angiogenesis, Wnt, integrin, and cadherin signaling pathways. The identification of differentially expressed genes in this study may contribute to a better understanding of the unusual sensitivity of TGCT to some DNA-damaging agents.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Células Tumorais Cultivadas
5.
Toxicol Appl Pharmacol ; 207(2 Suppl): 521-31, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16051290

RESUMO

Male reproductive health has received considerable attention in recent years. In addition to declining sperm quality, fertility problems and increased incidence of testicular cancer, there is accumulating evidence that genetic damage, in the form of unrepaired DNA lesions or de novo mutations, may be transmitted via sperm to the offspring. Such genetic damage may arise from environmental exposure or via endogenously formed reactive species, in stem cells or during spermatogenesis. Damaged testicular cells not removed by apoptosis rely on DNA repair for their genomic integrity to be preserved. To identify factors with potentially harmful effects on testicular cells and to characterise associated risk, a thorough understanding of repair mechanisms in these cells is of particular importance. Based on results from our own and other laboratories, we discuss the current knowledge of different pathways of excision repair in rodent and human testicular cells. It has become evident that, in human spermatogenic cells, some repair functions are indeed non-functional.


Assuntos
Dano ao DNA , Espermatozoides/efeitos dos fármacos , Animais , Reparo do DNA , Fertilidade/efeitos dos fármacos , Humanos , Masculino , Reprodução/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA