Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(8): 2038-2050, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075235

RESUMO

Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236. We demonstrated that BANAL-CoVs and SARS-CoV-2 have similar replication kinetics in human bronchial epithelial cells. However, BANAL-CoVs have impaired replication in human nasal epithelial cells and in the upper airway of mice. We also observed reduced pathogenesis in mice and diminished transmission in hamsters. Further, we observed that diverse bat coronaviruses evade interferon and downregulate major histocompatibility complex class I. Collectively, our study demonstrates that despite high genetic similarity across bat coronaviruses, prediction of pandemic potential of a virus necessitates functional characterization. Finally, the restriction of bat coronavirus replication in the upper airway highlights that transmission potential and innate immune restriction can be uncoupled in this high-risk family of emerging viruses.


Assuntos
COVID-19 , Quirópteros , Imunidade Inata , SARS-CoV-2 , Replicação Viral , Animais , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Quirópteros/virologia , Quirópteros/imunologia , COVID-19/transmissão , COVID-19/virologia , COVID-19/imunologia , Camundongos , Cricetinae , Evasão da Resposta Imune , Células Epiteliais/virologia , Células Epiteliais/imunologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Coronavirus/imunologia , Coronavirus/genética , Coronavirus/classificação , Coronavirus/fisiologia , Coronavirus/patogenicidade , Linhagem Celular , Feminino
2.
Nat Commun ; 13(1): 1547, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301314

RESUMO

SARS-CoV-2 remdesivir resistance mutations have been generated in vitro but have not been reported in patients receiving treatment with the antiviral agent. We present a case of an immunocompromised patient with acquired B-cell deficiency who developed an indolent, protracted course of SARS-CoV-2 infection. Remdesivir therapy alleviated symptoms and produced a transient virologic response, but her course was complicated by recrudescence of high-grade viral shedding. Whole genome sequencing identified a mutation, E802D, in the nsp12 RNA-dependent RNA polymerase, which was not present in pre-treatment specimens. In vitro experiments demonstrated that the mutation conferred a ~6-fold increase in remdesivir IC50 but resulted in a fitness cost in the absence of remdesivir. Sustained clinical and virologic response was achieved after treatment with casirivimab-imdevimab. Although the fitness cost observed in vitro may limit the risk posed by E802D, this case illustrates the importance of monitoring for remdesivir resistance and the potential benefit of combinatorial therapies in immunocompromised patients with SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Anticorpos Monoclonais Humanizados , RNA-Polimerase RNA-Dependente de Coronavírus , Feminino , Humanos , Hospedeiro Imunocomprometido , Mutação , SARS-CoV-2/genética
3.
J Biol Chem ; 295(35): 12426-12436, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32641492

RESUMO

Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.


Assuntos
Hepacivirus/enzimologia , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteólise , RNA Viral/biossíntese , Serina Proteases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Hepacivirus/genética , Humanos , Lipídeos de Membrana/genética , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , RNA Viral/genética , Serina Proteases/genética , Proteínas não Estruturais Virais/genética
4.
Proc Natl Acad Sci U S A ; 116(43): 21739-21747, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591191

RESUMO

Bacterial virulence factors or effectors are proteins targeted into host cells to coopt or interfere with cellular proteins and pathways. Viruses often coopt the same cellular proteins and pathways to support their replication in infected cells. Therefore, we screened the Legionella pneumophila effectors to probe virus-host interactions and identify factors that modulate tomato bushy stunt virus (TBSV) replication in yeast surrogate host. Among 302 Legionella effectors tested, 28 effectors affected TBSV replication. To unravel a coopted cellular pathway in TBSV replication, the identified DrrA effector from Legionella was further exploited. We find that expression of DrrA in yeast or plants blocks TBSV replication through inhibiting the recruitment of Rab1 small GTPase and endoplasmic reticulum-derived COPII vesicles into the viral replication compartment. TBSV hijacks Rab1 and COPII vesicles to create enlarged membrane surfaces and optimal lipid composition within the viral replication compartment. To further validate our Legionella effector screen, we used the Legionella effector LepB lipid kinase to confirm the critical proviral function of PI(3)P phosphoinositide and the early endosomal compartment in TBSV replication. We demonstrate the direct inhibitory activity of LegC8 effector on TBSV replication using a cell-free replicase reconstitution assay. LegC8 inhibits the function of eEF1A, a coopted proviral host factor. Altogether, the identified bacterial effectors with anti-TBSV activity could be powerful reagents in cell biology and virus-host interaction studies. This study provides important proof of concept that bacterial effector proteins can be a useful toolbox to identify host factors and cellular pathways coopted by (+)RNA viruses.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Legionella pneumophila/metabolismo , Tombusvirus/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Agrobacterium tumefaciens/virologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/virologia , Legionella pneumophila/patogenicidade , Saccharomyces cerevisiae/virologia , Nicotiana/virologia , Tombusvirus/metabolismo , Replicação Viral/fisiologia
5.
Cell Rep ; 26(7): 1800-1814.e5, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759391

RESUMO

The mechanisms that regulate envelopment of HCV and other viruses that bud intracellularly and/or lack late-domain motifs are largely unknown. We reported that K63 polyubiquitination of the HCV nonstructural (NS) 2 protein mediates HRS (ESCRT-0 component) binding and envelopment. Nevertheless, the ubiquitin signaling that governs NS2 ubiquitination remained unknown. Here, we map the NS2 interactome with the ubiquitin proteasome system (UPS) via mammalian cell-based screens. NS2 interacts with E3 ligases, deubiquitinases, and ligase regulators, some of which are candidate proviral or antiviral factors. MARCH8, a RING-finger E3 ligase, catalyzes K63-linked NS2 polyubiquitination in vitro and in HCV-infected cells. MARCH8 is required for infection with HCV, dengue, and Zika viruses and specifically mediates HCV envelopment. Our data reveal regulation of HCV envelopment via ubiquitin signaling and both a viral protein substrate and a ubiquitin K63-linkage of the understudied MARCH8, with potential implications for cell biology, virology, and host-targeted antiviral design.


Assuntos
Hepacivirus/metabolismo , Hepatite C/virologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HEK293 , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/metabolismo , Humanos , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
6.
Virus Res ; 248: 53-62, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477639

RESUMO

The development and clinical implementation of direct-acting antivirals (DAAs) has revolutionized the treatment of chronic hepatitis C. Infection with any hepatitis C virus (HCV) genotype can now be eliminated in more than 95% of patients with short courses of all-oral, well-tolerated drugs, even in those with advanced liver disease and liver transplant recipients. DAAs have proven so successful that some now consider HCV amenable to eradication, and continued research on the virus of little remaining medical relevance. However, given 400,000 HCV-related deaths annually important challenges remain, including identifying those who are infected, providing access to treatment and reducing its costs. Moreover, HCV infection rarely induces sterilizing immunity, and those who have been cured with DAAs remain at risk for reinfection. Thus, it is very unlikely that global eradication and elimination of the cancer risk associated with HCV infection can be achieved without a vaccine, yet research in that direction receives little attention. Further, over the past two decades HCV research has spearheaded numerous fundamental discoveries in the fields of molecular and cell biology, immunology and microbiology. It will continue to do so, given the unique opportunities afforded by the reagents and knowledge base that have been generated in the development and clinical application of DAAs. Considering these critical challenges and new opportunities, we conclude that funding for HCV research must be sustained.


Assuntos
Hepacivirus , Hepatite C Crônica/virologia , Pesquisa , Antivirais/farmacologia , Antivirais/uso terapêutico , Financiamento de Capital , Farmacorresistência Viral , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/prevenção & controle , Humanos , Saúde Pública , Pesquisa/economia , Pesquisadores , Pesquisa Translacional Biomédica , Vacinas Virais/imunologia , Recursos Humanos
7.
PLoS Pathog ; 13(12): e1006774, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253880

RESUMO

Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.


Assuntos
Hepacivirus/fisiologia , Hepacivirus/patogenicidade , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Células HEK293 , Hepacivirus/genética , Hepatite C/etiologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Modelos Biológicos , Mutação , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais/química , Proteínas Virais/genética , Virulência/genética , Virulência/fisiologia , Montagem de Vírus/genética , Montagem de Vírus/fisiologia
8.
PLoS Negl Trop Dis ; 10(10): e0005048, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27706161

RESUMO

BACKGROUND: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. CONCLUSIONS/SIGNIFICANCE: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.


Assuntos
Genoma Viral , Interferon Tipo I/antagonistas & inibidores , RNA Viral/genética , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Células A549 , Animais , Brasil/epidemiologia , Proteína DEAD-box 58/metabolismo , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Filogenia , RNA Viral/isolamento & purificação , Células Vero , Replicação Viral , Zika virus/genética , Zika virus/patogenicidade , Zika virus/fisiologia
9.
Cell Rep ; 16(10): 2576-2592, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27568284

RESUMO

The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.


Assuntos
Mitose , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/virologia , Células Neuroepiteliais/virologia , Neuroglia/virologia , Proteínas Serina-Treonina Quinases/metabolismo , Zika virus/patogenicidade , Encéfalo/embriologia , Encéfalo/patologia , Encéfalo/virologia , Morte Celular/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Feto/virologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Microcefalia/patologia , Microcefalia/virologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitose/efeitos dos fármacos , Neocórtex/patologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/ultraestrutura , Células Neuroepiteliais/efeitos dos fármacos , Células Neuroepiteliais/imunologia , Células Neuroepiteliais/ultraestrutura , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/virologia , Fármacos Neuroprotetores/farmacologia , Nucleosídeos/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Medula Espinal/patologia , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Zika virus/ultraestrutura , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Receptor Tirosina Quinase Axl
11.
PLoS Pathog ; 11(4): e1004817, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875808

RESUMO

Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.


Assuntos
Hepacivirus/genética , RNA Viral/genética , Transcrição Gênica/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Polimerase Dependente de RNA/genética , Transfecção
12.
PLoS Pathog ; 11(3): e1004736, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25774920

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.


Assuntos
Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Sequência Conservada , Eletroporação , Ativação Enzimática/fisiologia , Genoma Viral , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Estrutura Quaternária de Proteína , Transfecção , Proteínas não Estruturais Virais/química , Replicação Viral/fisiologia
13.
J Biol Chem ; 289(35): 24397-416, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25031324

RESUMO

The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome.


Assuntos
Hepacivirus/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteoma , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Primers do DNA , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Dados de Sequência Molecular , Fosforilação , Reação em Cadeia da Polimerase , RNA Viral/genética , Espectrometria de Massas em Tandem , Replicação Viral
14.
Nat Rev Microbiol ; 11(10): 688-700, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24018384

RESUMO

Hepatitis C virus, a major human pathogen, produces infectious virus particles with several unique features, such as an ability to interact with serum lipoproteins, a dizzyingly complicated process of virus entry, and a pathway of virus assembly and release that is closely linked to lipoprotein secretion. Here, we review these unique features, with an emphasis on recent discoveries concerning virus particle structure, virus entry and virus particle assembly and release.


Assuntos
Hepacivirus/patogenicidade , Montagem de Vírus , Internalização do Vírus , Animais , Endossomos/virologia , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/virologia , Humanos , Camundongos , Modelos Biológicos , Receptores Virais/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus
15.
Cell ; 147(2): 409-22, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000018

RESUMO

Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA (dsRNA). The dsRNA is sheathed within a network of protein domains that include a conserved "helicase" domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an α-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases, and this structure reveals complex interplay between motor domains, accessory mechanical domains, and RNA that has implications for understanding the nanomechanical function of this protein family and other ATPases more broadly.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Proteína DEAD-box 58 , Humanos , Hidrólise , Modelos Moleculares , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos , Alinhamento de Sequência , Transdução de Sinais
16.
PLoS Pathog ; 7(10): e1002302, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028650

RESUMO

Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly.


Assuntos
Hepacivirus/fisiologia , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Células HEK293 , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/patogenicidade , Humanos , Lipídeos , Microscopia Confocal , Microtúbulos , Proteínas do Core Viral/genética
17.
J Virol ; 85(4): 1706-17, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147927

RESUMO

The hepatitis C virus (HCV) NS2 protein is essential for particle assembly, but its function in this process is unknown. We previously identified critical genetic interactions between NS2 and the viral E1-E2 glycoprotein and NS3-NS4A enzyme complexes. Based on these data, we hypothesized that interactions between these viral proteins are essential for HCV particle assembly. To identify interaction partners of NS2, we developed methods to site-specifically biotinylate NS2 in vivo and affinity capture NS2-containing protein complexes from virus-producing cells with streptavidin magnetic beads. By using these methods, we confirmed that NS2 physically interacts with E1, E2, and NS3 but did not stably interact with viral core or NS5A proteins. We further characterized these protein complexes by blue native polyacrylamide gel electrophoresis and identified ≈ 520-kDa and ≈ 680-kDa complexes containing E2, NS2, and NS3. The formation of NS2 protein complexes was dependent on coexpression of the viral p7 protein and enhanced by cotranslation of viral proteins as a polyprotein. Further characterization indicated that the glycoprotein complex interacts with NS2 via E2, and the pattern of N-linked glycosylation on E1 and E2 suggested that these interactions occur in the early secretory pathway. Importantly, several mutations that inhibited virus assembly were shown to inhibit NS2 protein complex formation, and NS2 was essential for mediating the interaction between E2 and NS3. These studies demonstrate that NS2 plays a central organizing role in HCV particle assembly by bringing together viral structural and nonstructural proteins.


Assuntos
Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Hepacivirus/genética , Hepacivirus/patogenicidade , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética
19.
PLoS One ; 5(4): e9987, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20376322

RESUMO

BACKGROUND: Widely accessible small animal models suitable for the study of hepatitis C virus (HCV) in vivo are lacking, primarily because rodent hepatocytes cannot be productively infected and because human hepatocytes are not easily engrafted in immunodeficient mice. METHODOLOGY/PRINCIPAL FINDINGS: We report here on a novel approach for human hepatocyte engraftment that involves subcutaneous implantation of primary human fetal hepatoblasts (HFH) within a vascularized rat collagen type I/human fibronectin (rCI/hFN) gel containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVEC) in severe combined immunodeficient X beige (SCID/bg) mice. Maturing hepatic epithelial cells in HFH/Bcl-2-HUVEC co-implants displayed endocytotic activity at the basolateral surface, canalicular microvilli and apical tight junctions between adjacent cells assessed by transmission electron microscopy. Some primary HFH, but not Huh-7.5 hepatoma cells, appeared to differentiate towards a cholangiocyte lineage within the gels, based on histological appearance and cytokeratin 7 (CK7) mRNA and protein expression. Levels of human albumin and hepatic nuclear factor 4alpha (HNF4alpha) mRNA expression in gel implants and plasma human albumin levels in mice engrafted with HFH and Bcl-2-HUVEC were somewhat enhanced by including murine liver-like basement membrane (mLBM) components and/or hepatocyte growth factor (HGF)-HUVEC within the gel matrix. Following ex vivo viral adsorption, both HFH/Bcl-2-HUVEC and Huh-7.5/Bcl-2-HUVEC co-implants sustained HCV Jc1 infection for at least 2 weeks in vivo, based on qRT-PCR and immunoelectron microscopic (IEM) analyses of gel tissue. CONCLUSION/SIGNIFICANCE: The system described here thus provides the basis for a simple and robust small animal model of HFH engraftment that is applicable to the study of HCV infections in vivo.


Assuntos
Transplante de Células/métodos , Modelos Animais de Doenças , Hepacivirus , Hepatite C , Hepatócitos/virologia , Animais , Sobrevivência Celular , Técnicas de Cocultura , Colágeno , Células Endoteliais/transplante , Células Endoteliais/virologia , Fibronectinas , Géis/química , Hepatócitos/citologia , Hepatócitos/transplante , Humanos , Camundongos , Camundongos SCID , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Transplante Heterólogo , Veias Umbilicais/citologia
20.
J Virol ; 83(17): 8379-95, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19515772

RESUMO

The hepatitis C virus NS2 protein has been recently implicated in virus particle assembly. To further understand the role of NS2 in this process, we conducted a reverse genetic analysis of NS2 in the context of a chimeric genotype 2a infectious cell culture system. Of 32 mutants tested, all were capable of RNA replication and 25 had moderate-to-severe defects in virus assembly. Through forward genetic selection for variants capable of virus spread, we identified second-site mutations in E1, E2, NS2, NS3, and NS4A that suppressed NS2 defects in assembly. Two suppressor mutations, E1 A78T and NS3 Q221L, were further characterized by additional genetic and biochemical experiments. Both mutations were shown to suppress other NS2 defects, often with mutual exclusivity. Thus, several NS2 mutants were enhanced by NS3 Q221L and inhibited by E1 A78T, while others were enhanced by E1 A78T and inhibited by NS3 Q221L. Furthermore, we show that the NS3 Q221L mutation lowers the affinity of native, full-length NS3-NS4A for functional RNA binding. These data reveal a complex network of interactions involving NS2 and other viral structural and nonstructural proteins during virus assembly.


Assuntos
Proteínas de Transporte/metabolismo , Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas de Transporte/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Mapeamento de Interação de Proteínas , Supressão Genética , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA