Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 27(2): 631-647.e5, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970263

RESUMO

Deregulated signal transduction is a cancer hallmark, and its complexity and interconnectivity imply that combination therapy should be considered, but large data volumes that cover the complexity are required in user-friendly ways. Here, we present a searchable database resource of synthetic lethality with a PI3 kinase signal transduction inhibitor by performing a saturation screen with an ultra-complex shRNA library containing 30 independent shRNAs per gene target. We focus on Ras-PI3 kinase signaling with T cell leukemia as a screening platform for multiple clinical and experimental reasons. Our resource predicts multiple combination-based therapies with high fidelity, ten of which we confirmed with small molecule inhibitors. Included are biochemical assays, as well as the IPI145 (duvelisib) inhibitor. We uncover the mechanism of synergy between the PI3 kinase inhibitor GDC0941 (pictilisib) and the tubulin inhibitor vincristine and demonstrate broad synergy in 28 cell lines of 5 cancer types and efficacy in preclinical leukemia mouse trials.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , RNA Interferente Pequeno/genética , Mutações Sintéticas Letais/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
2.
Front Immunol ; 10: 448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915085

RESUMO

Extracellular vesicles (EV) that are released by immune cells are studied intensively for their functions in immune regulation and are scrutinized for their potential in human immunotherapy, for example against cancer. In our search for signals that stimulate the release of functional EV by dendritic cells we observed that LPS-activated human monocyte-derived dendritic cells (moDC) changed their morphological characteristics upon contact with non-cognate activated bystander T-cells, while non-activated bystander T-cells had no effect. Exposure to activated bystander T-cells also stimulated the release of EV-associated proteins by moDC, particularly CD63, and ICAM-1, although the extent of stimulation varied between individual donors. Stimulation of moDC with activated bystander T-cells also increased the release of EV-associated miR155, which is a known central modulator of T-cell responses. Functionally, we observed that EV from moDC that were licensed by activated bystander T-cells exhibited a capacity for antigen-specific T-cell activation. Taken together, these results suggest that non-cognatei interactions between DC and bystander T-cells modulates third party antigen-specific T-cell responses via EV.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vesículas Extracelulares/imunologia , Ativação Linfocitária/imunologia , Apresentação de Antígeno/imunologia , Células Cultivadas , Microambiente Celular/imunologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , MicroRNAs/genética , Tetraspanina 30/metabolismo
3.
Annu Rev Immunol ; 36: 435-459, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29400984

RESUMO

The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.


Assuntos
Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Transporte Biológico , Micropartículas Derivadas de Células/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/metabolismo , Exossomos/metabolismo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Humanos , Tolerância Imunológica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
PLoS Pathog ; 12(4): e1005550, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27077376

RESUMO

Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150's cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle.


Assuntos
Apresentação de Antígeno/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Evasão da Resposta Imune/imunologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas Virais/imunologia , Western Blotting , Citometria de Fluxo , Herpesvirus Humano 4/imunologia , Humanos , Microscopia Confocal , Linfócitos T/imunologia , Transdução Genética
5.
J Gen Virol ; 96(Pt 4): 858-865, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502648

RESUMO

During productive infection with Epstein-Barr virus (EBV), a dramatic suppression of cellular protein expression is caused by the viral alkaline exonuclease BGLF5. Among the proteins downregulated by BGLF5 are multiple immune components. Here, we show that shutoff reduces expression of the innate EBV-sensing Toll-like receptor-2 and the lipid antigen-presenting CD1d molecule, thereby identifying these proteins as novel targets of BGLF5. To silence BGLF5 expression in B cells undergoing productive EBV infection, we employed an shRNA approach. Viral replication still occurred in these cells, albeit with reduced late gene expression. Surface levels of a group of proteins, including immunologically relevant molecules such as CD1d and HLA class I and class II, were only partly rescued by depletion of BGLF5, suggesting that additional viral gene products interfere with their expression. Our combined approach thus provides a means to unmask novel EBV (innate) immune evasion strategies that may operate in productively infected B cells.


Assuntos
Linfócitos B/imunologia , Linfócitos B/virologia , Desoxirribonucleases/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/imunologia , Proteínas Virais/imunologia , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Linhagem Celular , Desoxirribonucleases/genética , Herpesvirus Humano 4/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Proteínas Virais/genética , Replicação Viral/genética , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA