Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Transl Psychiatry ; 13(1): 326, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863883

RESUMO

Immune cells and cytokines are largely recognized as significant factors in the pathophysiology of neuropsychiatric disorders. The possible role of other blood cells such as leukocytes in events of acute psychosis is in contrast only emerging. To study blood-born markers in acute psychosis we here evaluated plasma proteins in drug-naive first-episode psychosis (FEP) patients and healthy controls using a multiplex proximity extension assay technique. We analyzed a panel of 92 immune markers and plasma samples from 60 FEP patients and 50 controls and evaluated the changes obtained using multivariate statistical methods followed by protein pathway analyses. Data showed that 11 proteins are significantly different between FEP patients and healthy controls We observed increases in pro-inflammatory proteins such as interleukin-6, oncostatin-M, and transforming growth factor-alpha in FEP patients compared with controls. Likewise, the extracellular newly identified RAGE-binding protein (EN-RAGE) that regulates the expression of various cytokines was also elevated in the plasma of FEP patients. The results indicate that neutrophil-derived EN-RAGE could play an important role during the early phase of acute psychosis by stimulating cytokines and the immune response targeting thereby likely also the brain vasculature.


Assuntos
Transtornos Psicóticos , Humanos , Biomarcadores , Interleucina-6 , Análise Multivariada , Transtornos Psicóticos/metabolismo
2.
Front Cell Dev Biol ; 11: 1234204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711852

RESUMO

USP14 is a deubiquitinating enzyme involved in protein degradation by interacting with the proteasome and removal of poly-ubiquitin chains on target proteins. USP14 can influence cellular processes such as cell survival, DNA repair, ER stress, endocytosis, and the inflammatory response. USP14 further plays a role in tumor growth, and the inhibition of USP14 by compounds such as IU1 may affect cancer cell migration and invasion. Here we have studied the mechanisms for the action of IU1 in ML1 follicular thyroid cancer cells, comparing them with control, primary thyroid cells. Treatment with IU1 reduced proliferation of ML1 cells in a concentration-dependent manner, and more prominently than in control cells. IU1 decreased basal migration of ML1 cells, and after stimulation of cells with the bioactive compound, sphingosine-1-phosphate. The sphingosine-1-phosphate receptor 3 was increased in ML1 cells as compared with control thyroid cells, but this was not influenced by IU1. Further studies on the mechanism, revealed that IU1 enhanced the proteasome activity as well as LC3B-dependent autophagy flux in ML1 cells with an opposite effect on control thyroid cells. This indicates that IU1 elicits a cell-type dependent autophagy response, increasing it in ML1 cancer cells. The IU1-mediated stimulation of autophagy and proteasomes can likely contribute to the reduced cell proliferation and migration observed in ML1 cells. The precise set of proteins affected by IU1 in ML1 thyroid and other cancer cells warrant further investigations.

3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769152

RESUMO

Mechanical trauma to the spinal cord causes extensive neuronal death, contributing to the loss of sensory-motor and autonomic functions below the injury location. Apoptosis affects neurons after spinal cord injury (SCI) and is associated with increased caspase activity. Cleavage of X-linked inhibitor of apoptosis protein (XIAP) after SCI may contribute to this rise in caspase activity. Accordingly, we have shown that the elevation of XIAP resulted in increased neuronal survival after SCI and improved functional recovery. Therefore, we hypothesise that neuronal overexpression of XIAP can be neuroprotective after SCI with improved functional recovery. In line with this, studies of a transgenic mice with overexpression of XIAP in neurons revealed that higher levels of XIAP after spinal cord trauma favours neuronal survival, tissue preservation, and motor recovery after the spinal cord trauma. Using human SH-SY5Y cells overexpressing XIAP, we further showed that XIAP reduced caspase activity and apoptotic cell death after pro-apoptotic stimuli. In conclusion, this study shows that the levels of XIAP expression are an important factor for the outcome of spinal cord trauma and identifies XIAP as an important therapeutic target for alleviating the deleterious effects of SCI.


Assuntos
Neuroblastoma , Traumatismos da Medula Espinal , Camundongos , Animais , Humanos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Sobrevivência Celular/genética , Neuroblastoma/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Neurônios/metabolismo , Apoptose , Medula Espinal/metabolismo , Caspases/metabolismo , Recuperação de Função Fisiológica
4.
Sci Rep ; 12(1): 16817, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207326

RESUMO

Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned that similar mechanism may also involve SARS-CoV-2 and thereby affect the specificity and the quality of the immune response against the virus. Here, we employed high-throughput next generation phage display method to explore the link between antibody immune response to previously encountered antigens and spike (S) glycoprotein. By profiling the antibody response in COVID-19 naïve individuals with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we identified 15 highly antigenic epitopes on spike protein that showed cross-reactivity with antigens of seasonal, persistent, latent or chronic infections from common human viruses. We observed varying degrees of cross-reactivity of different viral antigens with S in an epitope-specific manner. The data show that pre-existing SARS-CoV-2 S1 and S2 cross-reactive serum antibody is readily detectable in pre-pandemic cohort. In the severe COVID-19 cases, we found differential antibody response to the 15 defined antigenic and cross-reactive epitopes on spike. We also noted that despite the high mutation rates of Omicron (B.1.1.529) variants of SARS-CoV-2, some of the epitopes overlapped with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by re-called antibody response from SARS-CoV-2 infections or vaccinations can function in chronically ill COVID-19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the chronic conditions. Understanding the relationships between prior antigen exposure at the antibody epitope level and the immune response to subsequent infections with viruses from a different strain is paramount to guiding strategies to exit the COVID-19 pandemic.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Antígenos Virais , Doença Crônica , Epitopos , Humanos , Pandemias , SARS-CoV-2
5.
Cancer Res ; 82(17): 3102-3115, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35767704

RESUMO

Accumulating evidence has demonstrated that drug resistance can be acquired in cancer through the repopulation of tumors by cancer stem cell (CSC) expansion. Here, we investigated mechanisms driving resistance and CSC repopulation in hepatocellular carcinoma (HCC) as a cancer model using two drug-resistant, patient-derived tumor xenografts that mimicked the development of acquired resistance to sorafenib or lenvatinib treatment observed in patients with HCC. RNA sequencing analysis revealed that cholesterol biosynthesis was most commonly enriched in the drug-resistant xenografts. Comparison of the genetic profiles of CD133+ stem cells and CD133- bulk cells from liver regeneration and HCC mouse models showed that the cholesterol pathway was preferentially upregulated in liver CSCs compared with normal liver stem cells. Consistently, SREBP2-mediated cholesterol biosynthesis was crucial for the augmentation of liver CSCs, and loss of SREBP2 conferred sensitivity to tyrosine kinase inhibitors, suggesting a role in regulation of acquired drug resistance in HCC. Similarly, exogenous cholesterol-treated HCC cells showed enhanced cancer stemness abilities and drug resistance. Mechanistically, caspase-3 (CASP3) mediated cleavage of SREBP2 from the endoplasmic reticulum to promote cholesterol biosynthesis, which consequently caused resistance to sorafenib/lenvatinib treatment by driving activation of the sonic hedgehog signaling pathway. Simvastatin, an FDA-approved cholesterol-lowering drug, not only suppressed HCC tumor growth but also sensitized HCC cells to sorafenib. These findings demonstrate that CSC populations in HCC expand via CASP3-dependent, SREBP2-mediated cholesterol biosynthesis in response to tyrosine kinase inhibitor therapy and that targeting cholesterol biosynthesis can overcome acquired drug resistance. SIGNIFICANCE: This study finds that cholesterol biosynthesis supports the expansion of cancer stem cell populations to drive resistance to tyrosine kinase inhibitor therapy in hepatocellular carcinoma, identifying potential therapeutic approaches for improving cancer treatment.


Assuntos
Carcinoma Hepatocelular , Caspase 3 , Colesterol , Neoplasias Hepáticas , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Colesterol/biossíntese , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
6.
Cells ; 11(10)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626737

RESUMO

LACTB is a relatively unknown mitochondrial protein structurally related to the bacterial penicillin-binding and beta-lactamase superfamily of serine proteases. LACTB has recently gained an increased interest due to its potential role in lipid metabolism and tumorigenesis. To date, around ninety studies pertaining to LACTB have been published, but the exact biochemical and cell biological function of LACTB still remain elusive. In this review, we summarise the current knowledge about LACTB with particular attention to the implications of the recently published study on the cryo-electron microscopy structure of the filamentous form of LACTB. From this and other studies, several specific properties of LACTB emerge, suggesting that the protein has distinct functions in different physiological settings. Resolving these issues by further research may ultimately lead to a unified model of LACTB's function in cell and organismal physiology. LACTB is the only member of its protein family in higher animals and LACTB may, therefore, be of particular interest for future drug targeting initiatives.


Assuntos
Proteínas Mitocondriais , Neoplasias , Animais , Microscopia Crioeletrônica , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
7.
iScience ; 23(1): 100790, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31901637

RESUMO

USP14 is a deubiquitinating enzyme associated with the proteasome important for protein degradation. Here we show that upon proteasome inhibition or expression of the mutant W58A-USP14, association of USP14 with the 19S regulatory particle is disrupted. MS-based interactomics revealed an interaction of USP14 with the chaperone, HSC70, in neuroblastoma cells. Proteasome inhibition enhanced binding of USP14 to HSC70, and to XBP1u and IRE1α proteins, demonstrating a role in the unfolded protein response. Striatal neurons expressing mutant huntingtin exhibited reduced USP14 and HSC70 levels, whereas inhibition of HSC70 downregulated USP14. Furthermore, proteasome inhibition or use of the mutant W58A-USP14 facilitated the interaction of USP14 with the autophagy protein, GABARAP. Functionally, overexpression of W58A-USP14 increased GABARAP positive autophagosomes in striatal neurons, and this was abrogated using the HSC70 inhibitor, VER-155008. Modulation of the USP14-HSC70 axis may represent a potential therapeutic target in HD to beneficially influence multiple proteostasis pathways.

9.
EBioMedicine ; 29: 47-59, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29449194

RESUMO

BACKGROUND: Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS: Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS: Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION: We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.


Assuntos
Autoanticorpos/imunologia , Autoimunidade , Narcolepsia/diagnóstico , Narcolepsia/etiologia , Receptores de Prostaglandina/imunologia , Vacinas/efeitos adversos , Adolescente , Adulto , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Autoanticorpos/sangue , Autoantígenos/imunologia , Biomarcadores , Criança , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/efeitos adversos , Influenza Humana/complicações , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Masculino , Neurônios/imunologia , Neurônios/metabolismo , Peptídeos/química , Peptídeos/imunologia , Prognóstico , Receptores de Prostaglandina/química , Adulto Jovem
11.
PLoS One ; 12(6): e0178526, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575023

RESUMO

Two promising lead structures of small molecular orexin receptor agonist have been reported, but without detailed analyses of the pharmacological properties. One of them, 1-(3,4-dichlorophenyl)-2-[2-imino-3-(4-methylbenzyl)-2,3-dihydro-1H-benzo[d]imidazol-1-yl]ethan-1-ol (Yan 7874), is commercially available, and we set out to analyze its properties. As test system we utilized human OX1 and OX2 orexin receptor-expressing Chinese hamster ovary (CHO) K1 cells as well as control CHO-K1 and neuro-2a neuroblastoma cells. Gq-coupling was assessed by measurement of intracellular Ca2+ and phospholipase C activity, and the coupling to Gi and Gs by adenylyl cyclase inhibition and stimulation, respectively. At concentrations above 1 µM, strong Ca2+ and low phospholipase C responses to Yan 7874 were observed in both OX1- and OX2-expressing cells. However, a major fraction of the response was not mediated by orexin receptors, as determined utilizing the non-selective orexin receptor antagonist N-biphenyl-2-yl-1-{[(1-methyl-1H-benzimidazol-2-yl)sulfanyl]acetyl}-L-prolinamide (TCS 1102) as well as control CHO-K1 cells. Yan 7874 did not produce any specific adenylyl cyclase response. Some experiments suggested an effect on cell viability by Yan 7874, and we thus analyzed this. Within a few hours of exposure, Yan 7874 markedly changed cell morphology (shrunken, rich in vacuoles), reduced growth, promoted cell detachment, and induced necrotic cell death. The effect was equal in cells expressing orexin receptors or not. Thus, Yan 7874 is a weak partial agonist of orexin receptors. It also displays strong off-target effects in the same concentration range, culminating in necrotic cell demise. This makes Yan 7874 unsuitable as orexin receptor agonist.


Assuntos
Benzimidazóis/farmacologia , Iminas/farmacologia , Receptores de Orexina/agonistas , Adenilil Ciclases/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Fosfolipases Tipo C/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1335-1348, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28414080

RESUMO

Cell death depends on the balance between the activities of pro- and anti-apoptotic factors. X-linked inhibitor of apoptosis protein (XIAP) plays an important role in the cytoprotective process by inhibiting the caspase cascade and regulating pro-survival signaling pathways. While searching for novel interacting partners of XIAP, we identified Fas-associated factor 1 (FAF1). Contrary to XIAP, FAF1 is a pro-apoptotic factor that also regulates several signaling pathways in which XIAP is involved. However, the functional relationship between FAF1 and XIAP is unknown. Here, we describe a new interaction between XIAP and FAF1 and describe the functional implications of their opposing roles in cell death and NF-κB signaling. Our results clearly demonstrate the interaction of XIAP with FAF1 and define the specific region of the interaction. We observed that XIAP is able to block FAF1-mediated cell death by interfering with the caspase cascade and directly interferes in NF-κB pathway inhibition by FAF1. Furthermore, we show that XIAP promotes ubiquitination of FAF1. Conversely, FAF1 does not interfere with the anti-apoptotic activity of XIAP, despite binding to the BIR domains of XIAP; however, FAF1 does attenuate XIAP-mediated NF-κB activation. Altered expression of both factors has been implicated in degenerative and cancerous processes; therefore, studying the balance between XIAP and FAF1 in these pathologies will aid in the development of novel therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Apoptose , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , NF-kappa B/metabolismo , Ligação Proteica , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química
13.
Front Aging Neurosci ; 8: 254, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833551

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder causing movement disabilities and several non-motor symptoms in afflicted patients. Recent studies in animal models of PD and analyses of brain specimen from PD patients revealed an increase in the level and activity of the non-receptor tyrosine kinase Abelson (c-Abl) in dopaminergic neurons with phosphorylation of protein substrates, such as α-synuclein and the E3 ubiquitin ligase, Parkin. Most significantly inhibition of c-Abl kinase activity by small molecular compounds used in the clinic to treat human leukemia have shown promising neuroprotective effects in cell and animal models of PD. This has raised hope that similar beneficial outcome may also be observed in the treatment of PD patients by using c-Abl inhibitors. Here we highlight the background for the current optimism, reviewing c-Abl and its relationship to pathophysiological pathways prevailing in PD, as well as discussing issues related to the pharmacology and safety of current c-Abl inhibitors. Clearly more rigorously controlled and well-designed trials are needed before the c-Abl inhibitors can be used in the neuroclinic to possibly benefit an increasing number of PD patients.

14.
Eur J Neurosci ; 43(5): 626-39, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26741810

RESUMO

Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP.


Assuntos
Lesões Encefálicas/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Lesões Encefálicas/etiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Morte Celular , Células Cultivadas , Proteínas Inibidoras de Apoptose/genética , Ácido Caínico/toxicidade , Camundongos , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
15.
Front Cell Dev Biol ; 2: 66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25414849
16.
Cell Mol Life Sci ; 69(15): 2465-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22678664

RESUMO

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional coactivator that favorably affects mitochondrial function. This concept is supported by an increasing amount of data including studies in PGC-1α gene-deleted mice, suggesting that PGC-1α is a rescue factor capable of boosting cell metabolism and promoting cell survival. However, this view has now been called into question by a recent study showing that adeno-associated virus-mediated PGC-1α overexpression causes overt cell degeneration in dopaminergic neurons. How is this to be understood, and can these seemingly conflicting findings tell us something about the role of PGC-1α in cell stress and in control of neuronal homeostasis?


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Neurônios Dopaminérgicos/fisiologia , Homeostase , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia , Modelos Neurológicos , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Transativadores/deficiência
17.
J Biol Chem ; 287(16): 12602-11, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22378787

RESUMO

The LDLR is a critical factor in the regulation of blood cholesterol levels that are altered in different human diseases. The level of LDLR in the cell is regulated by both transcriptional and post-transcriptional events. The E3 ubiquitin ligase, myosin regulatory light chain-interacting protein (Mylip)/inducible degrader of the LDL-R (Idol) was shown to induce degradation of LDLR via protein ubiquitination. We have here studied novel factors and mechanisms that may regulate Mylip/Idol in human hepatocyte cells and in mouse macrophages. We observed that FGF21 that is present in serum in different conditions reduced Mylip/Idol at the RNA and protein level, and increased LDLR levels and stability in the cells. FGF21 also enhanced expression of Canopy2 (Cnpy2)/MIR-interacting Saposin-like protein (Msap) that is known to interact with Mylip/Idol. Overexpression of Cnpy2/Msap increased LDLRs, and knockdown experiments showed that Cnpy2/Msap is crucial for the FGF21 effect on LDLRs. Experiments using DiI-labeled LDL particles showed that FGF21 increased lipoprotein uptake and the effect of FGF21 was additive to that of statins. Our results are consistent with an important role of FGF21 and Cnpy2/Msap in the regulation of LDLRs in cultured cells, which warrants further studies using human samples.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colesterol/farmacocinética , Fatores de Crescimento de Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/genética , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
18.
Exp Cell Res ; 318(1): 33-42, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21925170

RESUMO

Increased protein aggregation and altered cell signaling accompany many neurodegenerative diseases including Huntington's disease (HD). Cell stress is counterbalanced by signals mediating cell repair but the identity of these are not fully understood. We show here that the mammalian target of rapamycin (mTOR) pathway is inhibited and cytoprotective autophagy is activated in neuronal PC6.3 cells at 24 h after expression of mutant huntingtin proteins. Tuberous sclerosis complex (TSC) 1/2 interacted with growth arrest and DNA damage protein 34 (GADD34), which caused TSC2 dephosphorylation and induction of autophagy in mutant huntingtin expressing cells. However, GADD34 and autophagy decreased at later time points, after 48 h of transfection with the concomitant increase in mTOR activity. Overexpression of GADD34 counteracted these effects and increased cytoprotective autophagy and cell survival. These results show that GADD34 plays an important role in cell protection in mutant huntingtin expressing cells. Modulation of GADD34 and the TSC pathway may prove useful in counteracting cell degeneration accompanying HD and other neurodegenerative diseases.


Assuntos
Antígenos de Diferenciação/metabolismo , Autofagia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antígenos de Diferenciação/genética , Autofagia/genética , Células Cultivadas , Proteína Huntingtina , Mutação , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/genética , Ratos , Sirolimo/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores
19.
Neuropharmacology ; 62(2): 1011-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22041555

RESUMO

Treatment with resveratrol (RSV) has been shown to protect vulnerable neurons after various brain injuries and in neurodegenerative diseases. The mechanisms for the effects of RSV in brain are not fully understood, but RSV may affect the expression of various gene products. RSV is structurally related to the synthetic estrogen, diethylstilbestrol so the effects of RSV may be gender-specific. Here we studied the role of RSV in the regulation of dopamine transporter (DAT) in the striatum using male and female mice. The basic levels of DAT in the striatum showed no sex difference, but the levels increased significantly by RSV (20 mg/kg i.p.) in female but not in male mice. Pretreatment of mice with the selective estrogen receptor (ER), ERα- and ERß antagonist ICI 182,780, led to a complete block of RSV effect on DAT protein levels, suggesting that ERs are involved in the up-regulation of DAT by RSV. Similar data was also obtained in culture using human MESC2.10 and mouse SN4741 dopaminergic cells after treatment with RSV. Data further showed that RSV specifically induced gene transcription of DAT in the dopaminergic cells. These results show that estrogen receptors are involved in the up-regulation of DAT by RSV in the dopaminergic neurons, demonstrating a sex-dependent effect of RSV in the brain that may be of clinical importance. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.


Assuntos
Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores de Estrogênio/metabolismo , Estilbenos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Feminino , Fulvestranto , Humanos , Masculino , Camundongos , Resveratrol , Fatores Sexuais
20.
Neurosci Lett ; 488(3): 263-6, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21094207

RESUMO

Resveratrol, a polyphenol derived e.g. from red grapes, has been shown to mediate several positive biological actions such as protection of cells against oxidative stress. It can also influence cell signaling, but the mechanisms behind its antioxidant properties are largely unknown. Here we show that RSV reduces oxidative stress and enhances cell survival in PC6.3 cells depending on the concentration. In these cells, RSV increased the levels of antioxidants, SOD2 and TRX2, and of X chromosome-linked inhibitor of apoptosis protein. RSV also activated NFκB signaling as shown using luciferase reporter constructs. These findings show that RSV regulates oxidative stress and mitochondrial antioxidants in neuronal cells. This may contribute to cell protection in various brain disorders.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/biossíntese , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Resveratrol , Superóxido Dismutase/biossíntese , Tiorredoxinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA