Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1201439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482013

RESUMO

Introduction: Obesity is associated with chronic low-grade inflammation of adipose tissue (AT) and an increase of AT macrophages (ATMs) that is linked to the onset of type 2 diabetes. We have recently shown that neutralization of interleukin (IL)-6 in obese AT organ cultures inhibits proliferation of ATMs, which occurs preferentially in alternatively activated macrophage phenotype. Methods: In this study, we investigated AT biology and the metabolic phenotype of mice with myeloid cell-specific IL-6Rα deficiency (Il6ra Δmyel) after normal chow and 20 weeks of high-fat diet focusing on AT inflammation, ATM polarization and proliferation. Using organotypical AT culture and bone marrow derived macrophages (BMDMs) of IL-4Rα knockout mice (Il4ra -/-) we studied IL-6 signaling. Results: Obese Il6ra Δmyel mice exhibited no differences in insulin sensitivity or histological markers of AT inflammation. Notably, we found a reduction of ATMs expressing the mannose receptor 1 (CD206), as well as a decrease of the proliferation marker Ki67 in ATMs of Il6ra Δmyel mice. Importantly, organotypical AT culture and BMDM data of Il4ra -/- mice revealed that IL-6 mediates a shift towards the M2 phenotype independent from the IL-6/IL-4Rα axis. Discussion: Our results demonstrate IL-4Rα-independent anti-inflammatory effects of IL-6 on macrophages and the ability of IL-6 to maintain proliferation rates in obese AT.


Assuntos
Diabetes Mellitus Tipo 2 , Interleucina-6 , Camundongos , Animais , Interleucina-6/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Camundongos Knockout , Obesidade/metabolismo
2.
J Hepatol ; 80(3): 397-408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37977244

RESUMO

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), monocytes infiltrate visceral adipose tissue promoting local and hepatic inflammation. However, it remains unclear what drives inflammation and how the immune landscape in adipose tissue differs across the NAFLD severity spectrum. We aimed to assess adipose tissue macrophage (ATM) heterogeneity in a NAFLD cohort. METHODS: Visceral adipose tissue macrophages from lean and obese patients, stratified by NAFLD phenotypes, underwent single-cell RNA sequencing. Adipose tissue vascular integrity and breaching was assessed on a protein level via immunohistochemistry and immunofluorescence to determine targets of interest. RESULTS: We discovered multiple ATM populations, including resident vasculature-associated macrophages (ResVAMs) and distinct metabolically active macrophages (MMacs). Using trajectory analysis, we show that ResVAMs and MMacs are replenished by a common transitional macrophage (TransMac) subtype and that, during NASH, MMacs are not effectively replenished by TransMac precursors. We postulate an accessory role for MMacs and ResVAMs in protecting the adipose tissue vascular barrier, since they both interact with endothelial cells and localize around the vasculature. However, across the NAFLD severity spectrum, alterations occur in these subsets that parallel an adipose tissue vasculature breach characterized by albumin extravasation into the perivascular tissue. CONCLUSIONS: NAFLD-related macrophage dysfunction coincides with a loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. IMPACT AND IMPLICATIONS: Our study describes for the first time the myeloid cell landscape in human visceral adipose tissue at single-cell level within a cohort of well-characterized patients with non-alcoholic fatty liver disease. We report unique non-alcoholic steatohepatitis-specific transcriptional changes within metabolically active macrophages (MMacs) and resident vasculature-associated macrophages (ResVAMs) and we demonstrate their spatial location surrounding the vasculature. These dysfunctional transcriptional macrophage states coincided with the loss of adipose tissue vascular integrity, providing a plausible mechanism by which tissue inflammation is perpetuated in adipose tissue and downstream in the liver. Our study provides a theoretical basis for new therapeutic strategies to be directed towards reinstating the endogenous metabolic, homeostatic and cytoprotective functions of ResVAMs and MMacs, including their role in protecting vascular integrity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Células Endoteliais/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo
3.
Gut ; 71(11): 2179-2193, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598978

RESUMO

OBJECTIVE: Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN: Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS: While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION: Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Obesidade/metabolismo , Proteoma/metabolismo
4.
Cell Death Dis ; 12(6): 579, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34091595

RESUMO

A chronic low-grade inflammation within adipose tissue (AT) seems to be the link between obesity and some of its associated diseases. One hallmark of this AT inflammation is the accumulation of AT macrophages (ATMs) around dead or dying adipocytes, forming so-called crown-like structures (CLS). To investigate the dynamics of CLS and their direct impact on the activation state of ATMs, we established a laser injury model to deplete individual adipocytes in living AT from double reporter mice (GFP-labeled ATMs and tdTomato-labeled adipocytes). Hence, we were able to detect early ATM-adipocyte interactions by live imaging and to determine a precise timeline for CLS formation after adipocyte death. Further, our data indicate metabolic activation and increased lipid metabolism in ATMs upon forming CLS. Most importantly, adipocyte death, even in lean animals under homeostatic conditions, leads to a locally confined inflammation, which is in sharp contrast to other tissues. We identified cell size as cause for the described pro-inflammatory response, as the size of adipocytes is above a critical threshold size for efferocytosis, a process for anti-inflammatory removal of dead cells during tissue homeostasis. Finally, experiments on parabiotic mice verified that adipocyte death leads to a pro-inflammatory response of resident ATMs in vivo, without significant recruitment of blood monocytes. Our data indicate that adipocyte death triggers a unique degradation process and locally induces a metabolically activated ATM phenotype that is globally observed with obesity.


Assuntos
Adipócitos/patologia , Inflamação/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Macrófagos/patologia , Obesidade/fisiopatologia , Animais , Feminino , Humanos , Camundongos
5.
Eur J Immunol ; 51(6): 1399-1411, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33784418

RESUMO

Obesity is frequently associated with a chronic low-grade inflammation in the adipose tissue (AT) and impaired glucose homeostasis. Adipose tissue macrophages (ATMs) have been shown to accumulate in the inflamed AT either by means of recruitment from the blood or local proliferation. ATM proliferation and activation can be stimulated by TH2 cytokines, such as IL-4 and IL-13, suggesting involvement of CD4-positive T cells in ATM proliferation and activation. Furthermore, several studies have associated T cells to alterations in glucose metabolism. Therefore, we sought to examine a direct impact of CD4-positive T cells on ATM activation, ATM proliferation and glucose homeostasis using an in vivo depletion model. Surprisingly, CD4 depletion did not affect ATM activation, ATM proliferation, or insulin sensitivity. However, CD4 depletion led to a significant improvement of glucose tolerance. In line with this, we found moderate disturbances in pancreatic endocrine function following CD4 depletion. Hence, our data suggest that the effect on glucose metabolism observed after CD4 depletion might be mediated by organs other than AT and independent of AT inflammation.


Assuntos
Tecido Adiposo/imunologia , Linfócitos T CD4-Positivos/imunologia , Glucose/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Pâncreas/metabolismo , Animais , Movimento Celular , Células Cultivadas , Homeostase , Depleção Linfocítica , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/imunologia
6.
Adipocyte ; 9(1): 1-6, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842670

RESUMO

Due to the epidemic rise of obesity prevalence, adipose tissue (AT) research is of major interest. Our aim was to study specificity of the most-common Cre/loxP approach for inducible gene manipulation of AT in mice (AdipoqCre-ERT2). We used mice with tamoxifen-sensitive Cre recombinase controlled by the adiponectin promoter (AdipoqCre-ERT2), which were crossed to a tdTomato reporter mouse to visualize the site of recombination on a single-cell resolution. Albeit tamoxifen induced tdTomato expression in this model, also non-stimulated background recombination ('Cre leakage') was detected in AT of untreated Adipoq-CreERT2xTDTO mice in vivo. Quantification of Cre leakage revealed age, sex and genotype as factors impacting on non-induced Cre recombination.


Assuntos
Tecido Adiposo/metabolismo , DNA/genética , Integrases/metabolismo , Receptores de Estrogênio/metabolismo , Recombinação Genética/genética , Fatores Etários , Animais , Células Cultivadas , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA