Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 41(5): 965-975, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247416

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) studies have consistently demonstrated disproportionately smaller corpus callosa in individuals with a history of prenatal alcohol exposure (PAE) but have not previously examined the feasibility of detecting this effect in infants. Tissue segmentation of the newborn brain is challenging because analysis techniques developed for the adult brain are not directly transferable, and segmentation for cerebral morphometry is difficult in neonates, due to the latter's incomplete myelination. This study is the first to use volumetric structural MRI to investigate PAE effects in newborns using manual tracing and to examine the cross-sectional area of the corpus callosum (CC). METHODS: Forty-three nonsedated infants born to 32 Cape Coloured heavy drinkers and 11 controls recruited prospectively during pregnancy were scanned using a custom-designed birdcage coil for infants, which increases signal-to-noise ratio almost 2-fold compared to the standard head coil. Alcohol use was ascertained prospectively during pregnancy, and fetal alcohol spectrum disorders diagnosis was conducted by expert dysmorphologists. Data were acquired using a multi-echo FLASH protocol adapted for newborns, and a knowledge-based procedure was used to hand-segment the neonatal brains. RESULTS: CC was disproportionately smaller in alcohol-exposed neonates than controls after controlling for intracranial volume. By contrast, CC area was unrelated to infant sex, gestational age, age at scan, or maternal smoking, marijuana, or methamphetamine use during pregnancy. CONCLUSIONS: Given that midline craniofacial anomalies have been recognized as a hallmark of fetal alcohol syndrome in humans and animal models since this syndrome was first identified, the CC deficit identified here in newborns may support early identification of a range of midline structural impairments. Smaller CC during the newborn period may provide an early indicator of fetal alcohol-related cognitive deficits that have been linked to this critically important brain structure in childhood and adolescence.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Corpo Caloso/diagnóstico por imagem , Imageamento por Ressonância Magnética , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Adulto , Consumo de Bebidas Alcoólicas/epidemiologia , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , África do Sul/epidemiologia , Adulto Jovem
2.
Front Neuroanat ; 11: 132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379419

RESUMO

Disproportionate volume reductions in the basal ganglia, corpus callosum (CC) and hippocampus have been reported in children with prenatal alcohol exposure (PAE). However, few studies have investigated these reductions in high prevalence communities, such as the Western Cape Province of South Africa, and only one study made use of manual tracing, the gold standard of volumetric analysis. The present study examined the effects of PAE on subcortical neuroanatomy using manual tracing and the relation of volumetric reductions in these regions to IQ and performance on the California Verbal Learning Test-Children's Version (CVLT-C), a list learning task sensitive to PAE. High-resolution T1-weighted images were acquired, using a sequence optimized for morphometric neuroanatomical analysis, on a Siemens 3T Allegra MRI scanner from 71 right-handed, 9- to 11-year-old children [9 fetal alcohol syndrome (FAS), 19 partial FAS (PFAS), 24 non-syndromal heavily exposed (HE) and 19 non-exposed controls]. Frequency of maternal drinking was ascertained prospectively during pregnancy using timeline follow-back interviews. PAE was examined in relation to volumes of the CC and left and right caudate nuclei, nucleus accumbens and hippocampi. All structures were manually traced using Multitracer. Higher levels of PAE were associated with reductions in CC volume after adjustment for TIV. Although the effect of PAE on CC was confounded with smoking and lead exposure, additional analyses showed that it was not accounted for by these exposures. Amongst dysmorphic children, smaller CC was associated with poorer IQ and CVLT-C scores and statistically mediated the effect of PAE on IQ. In addition, higher levels of PAE were associated with bilateral volume reductions in caudate nuclei and hippocampi, effects that remained significant after control for TIV, child sex and age, socioeconomic status, maternal smoking during pregnancy, and childhood lead exposure. These data confirm previous findings showing that PAE is associated with decreases in subcortical volumes and is the first study to show that decreases in callosal volume may play a role in fetal alcohol-related impairment in cognitive function seen in childhood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA