Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38477483

RESUMO

CONTEXT: Proneurotensin (pNT) is associated with obesity and T2D, but the effects of Roux-en-Y gastric bypass (RYGB) on postprandial pNT levels are not well studied. OBJECTIVE: Assess effects of RYGB versus very low-energy diet (VLED) on pNT levels in response to mixed-meal tests (MMT), and long-term effects of RYGB on fasting pNT.Study participants: Cohort 1: Nine normoglycemic (NG) and ten T2D patients underwent MMT before and after VLED, immediately post-RYGB and six weeks post-RYGB. Cohort 2: Ten controls with normal weight and ten patients with obesity and T2D, who underwent RYGB or vertical sleeve gastrectomy (VSG), were subjected to MMTs and GIP infusions pre-surgery and three months post-surgery. GLP-1 infusions were performed in normal weight participants. Cohort 3: Fasting pNT was assessed pre-RYGB (n=161), two months post-RYGB (n=92) and 1-year post-RYGB (n=118) in NG and T2D patients. pNT levels were measured using ELISA. RESULTS: Reduced fasting and postprandial pNT were evident after VLED and immediately following RYGB. Reintroduction of solid food post-RYGB increased fasting and postprandial pNT. Prior to RYGB, all patients lacked a meal response in pNT, but this was evident post-RYGB/VSG. GIP- or GLP-1 infusion had no effect on pNT levels. Fasting pNT were higher 1-year post-RYGB regardless of glycemic status. CONCLUSION: RYGB causes a transient reduction in pNT as a consequence of caloric restriction. The RYGB/VSG-induced rise in postprandial pNT is independent of GIP and GLP-1 and higher fasting pNT are maintained one year post-surgically.

2.
Diabetologia ; 67(2): 356-370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032369

RESUMO

AIMS/HYPOTHESIS: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS: Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION: RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Humanos , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Derivação Gástrica/métodos , Células L , Diabetes Mellitus Tipo 2/metabolismo , RNA , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Colesterol , RNA Mensageiro , Glicemia/metabolismo
3.
Obesity (Silver Spring) ; 31(10): 2530-2542, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37587639

RESUMO

OBJECTIVE: Some patients regain weight to a variable extent from 1 year after Roux-en-Y gastric bypass surgery (RYGB), though rarely reaching preoperative values. The aim of the present study was to investigate whether, when, and to what extent metabolic remission occurs. METHODS: Fasting metabolite and lipid profiles were determined in blood plasma collected from a nonrandomized intervention study involving 148 patients before RYGB and at 2, 12, and 60 months post RYGB. Both short-term and long-term alterations in metabolism were assessed. Anthropometric and clinical variables were assessed at all study visits. RESULTS: This study found that the vast majority of changes in metabolite levels occurred during the first 2 months post RYGB. Notably, thereafter the metabolome started to return toward the presurgical state. Consequently, a close-to-presurgical metabolome was observed at the time when patients reached their lowest weight and glucose level. Lipids with longer acyl chains and a higher degree of unsaturation were altered more dramatically compared with shorter and more saturated lipids, suggesting a systematic and reversible lipid remodeling. CONCLUSIONS: Remission of the metabolic state was observed prior to notable weight regain. Further and more long-term studies are required to assess whether the extent of metabolic remission predicts future weight regain and glycemic deterioration.


Assuntos
Derivação Gástrica , Humanos , Metaboloma , Antropometria , Aumento de Peso , Lipídeos
4.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36656641

RESUMO

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina/genética , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição PAX5/metabolismo
5.
J Clin Endocrinol Metab ; 107(7): 1930-1938, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35363252

RESUMO

CONTEXT: Glucose-dependent insulinotropic peptide (GIP) and meal ingestion increase subcutaneous adipose tissue (SAT) perfusion in healthy individuals. The effects of GIP and a meal on visceral adipose tissue (VAT) perfusion are unclear. OBJECTIVE: Our aim was to investigate the effects of meal and GIP on VAT and SAT perfusion in obese individuals with type 2 diabetes mellitus (T2DM) before and after bariatric surgery. METHODS: We recruited 10 obese individuals with T2DM scheduled for bariatric surgery and 10 control individuals. Participants were studied under 2 stimulations: meal ingestion and GIP infusion. SAT and VAT perfusion was measured using 15O-H2O positron emission tomography-magnetic resonance imaging at 3 time points: baseline, 20 minutes, and 50 minutes after the start of stimulation. Obese individuals were studied before and after bariatric surgery. RESULTS: Before bariatric surgery the responses of SAT perfusion to meal (P = .04) and GIP-infusion (P = .002) were blunted in the obese participants compared to controls. VAT perfusion response did not differ between obese and control individuals after a meal or GIP infusion. After bariatric surgery SAT perfusion response to a meal was similar to that of controls. SAT perfusion response to GIP administration remained lower in the operated-on than control participants. There was no change in VAT perfusion response after bariatric surgery. CONCLUSION: The vasodilating effects of GIP and meal are blunted in SAT but not in VAT in obese individuals with T2DM. Bariatric surgery improves the effects of a meal on SAT perfusion, but not the effects of GIP. Postprandial increase in SAT perfusion after bariatric surgery seems to be regulated in a GIP-independent manner.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Tecido Adiposo , Diabetes Mellitus Tipo 2/cirurgia , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Gordura Intra-Abdominal , Obesidade , Gordura Subcutânea
6.
Peptides ; 151: 170747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065097

RESUMO

Impaired beta cell function and beta cell death are key features of type 2 diabetes (T2D). Cocaine- and amphetamine-regulated transcript (CART) is necessary for normal islet function in mice. CART increases glucose-stimulated insulin secretion in vivo in mice and in vitro in human islets and CART protects beta cells against glucotoxicity-induced cell death in vitro in rats. Furthermore, beta cell CART is upregulated in T2D patients and in diabetic rodent models as a consequence of hyperglycaemia. The aim of this study was to assess the impact of upregulated beta cell CART on islet hormone secretion and glucose homeostasis in a transgenic mouse model. To this end, mice with beta cell-specific overexpression of CART (CARTtg mice) were generated. CARTtg mice challenged by aging, high fat diet feeding or streptozotocin treatment were phenotyped with respect to in vivo and in vitro insulin and glucagon secretion, glucose homeostasis, and beta cell mass. In addition, the impact of adenoviral overexpression of CART on insulin secretion was studied in INS-1 832/13 cells. CARTtg mice had a normal metabolic phenotype under basal conditions. On the other hand, with age CARTtg mice displayed increased insulin secretion and improved glucose elimination, compared with age-matched WT mice. Furthermore, compared with WT controls, CARTtg mice had increased insulin secretion after feeding a high fat diet, as well as lower glucose levels and higher insulin secretion after streptozotocin treatment. Viral overexpression of CART in INS-1 832/13 cells resulted in increased glucose-stimulated insulin secretion. Together, these results imply that beta cell CART acts to increase insulin secretion when beta cell function is challenged. We propose that the increase in beta cell CART is part of a compensatory mechanisms trying to counteract the hyperglycaemia in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Ratos , Estreptozocina
7.
Peptides ; 149: 170708, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34896575

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) is mostly known for its appetite regulating effects in the central nervous system. However, CART is also highly expressed in the peripheral nervous system as well as in certain endocrine cells. Our group has dedicated more than 20 years to understand the role of CART in the pancreatic islets and in this review we summarize what is known to date about CART expression and function in the islets. CART is expressed in both islet cells and nerve fibers innervating the islets. Large species differences are at hand and CART expression is highly dynamic and increased during development, as well as in Type 2 Diabetes and certain endocrine tumors. In the human islets CART is expressed in alpha cells and beta cells and the expression is increased in T2D patients. CART increases insulin secretion, reduces glucagon secretion, and protects against beta cell death by reducing apoptosis and increasing proliferation. It is still not fully understood how CART mediates its effects or which receptors that are involved. Nevertheless, CART is endowed with several properties that are beneficial in a T2D perspective. Many of the described effects of CART resemble those of GLP-1, and interestingly CART has been found to potentiate some of the effects of GLP-1, paving the way for CART-based treatments in combination with GLP-1-based drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Biologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
8.
Peptides ; 136: 170445, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197511

RESUMO

Roux-en-Y gastric bypass (RYGB) is the most effective treatment for morbid obesity and results in rapid remission of type 2 diabetes (T2D), before significant weight loss occurs. The underlying mechanisms for T2D remission are not fully understood. To gain insight into these mechanisms we used RYGB-operated diabetic GK-rats and Wistar control rats. Twelve adult male Wistar- and twelve adult male GK-rats were subjected to RYGB- or sham-operation. Oral glucose tolerance tests (OGTT) were performed six weeks after surgery. RYGB normalized fasting glucose levels in GK-rats, without affecting fasting insulin levels. In both rat strains, RYGB caused increased postprandial responses in glucose, GLP-1, and GIP. RYGB caused elevated postprandial insulin secretion in Wistar-rats, but had no effect on insulin secretion in GK-rats. In agreement with this, RYGB improved HOMA-IR in GK-rats, but had no effect on HOMA-ß. RYGB-operated GK-rats had an increased number of GIP receptor and GLP-1 receptor immunoreactive islet cells, but RYGB had no major effect on beta or alpha cell mass. Furthermore, in RYGB-operated GK-rats, increased Slc5a1, Pck2 and Pfkfb1 and reduced Fasn hepatic mRNA expression was observed. In summary, our data shows that RYGB induces T2D remission and enhanced postprandial incretin hormone secretion in GK-rats, without affecting insulin secretion or beta cell mass. Thus our data question the dogmatic view of how T2D remission is achieved and instead point at improved insulin sensitivity as the main mechanism of remission.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polipeptídeo Inibidor Gástrico/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Obesidade Mórbida/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/cirurgia , Modelos Animais de Doenças , Derivação Gástrica , Teste de Tolerância a Glucose , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Ratos , Ratos Wistar , Redução de Peso/genética , Redução de Peso/fisiologia
9.
Diabetes ; 69(9): 2027-2035, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527768

RESUMO

Bariatric surgery is an efficient method to induce weight loss and also, frequently, remission of type 2 diabetes (T2D). Unpaired studies have shown bariatric surgery and dietary interventions to differentially affect multiple hormonal and metabolic parameters, suggesting that bariatric surgery causes T2D remission at least partially via unique mechanisms. In the current study, plasma metabolite profiling was conducted in patients with (n = 10) and without T2D (n = 9) subjected to Roux-en-Y gastric bypass surgery (RYGB). Mixed-meal tests were conducted at baseline, after the presurgical very-low-calorie diet (VLCD) intervention, immediately after RYGB, and after a 6-week recovery period. Thereby, we could compare fasted and postprandial metabolic consequences of RYGB and VLCD in the same patients. VLCD yielded a pronounced increase in fasting acylcarnitine levels, whereas RYGB, both immediately and after a recovery period, resulted in a smaller but opposite effect. Furthermore, we observed profound changes in lipid metabolism following VLCD but not in response to RYGB. Most changes previously associated with RYGB were found to be consequences of the presurgical dietary intervention. Overall, our results question previous findings of unique metabolic effects of RYGB and suggest that the effect of RYGB on the metabolite profile is mainly attributed to caloric restriction.


Assuntos
Restrição Calórica/métodos , Diabetes Mellitus Tipo 2/cirurgia , Jejum/sangue , Derivação Gástrica/métodos , Obesidade Mórbida/cirurgia , Adulto , Glicemia/metabolismo , Carnitina/análogos & derivados , Carnitina/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Insulina/sangue , Resistência à Insulina , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Período Pós-Prandial
10.
Endocr Connect ; 7(7): 888-896, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941634

RESUMO

AIMS/HYPOTHESIS: The mechanisms for improved glycemic control after bariatric surgery in subjects with type 2 diabetes (T2D) are not fully known. We hypothesized that dynamic hepatic blood responses to a mixed-meal are changed after bariatric surgery in parallel with an improvement in glucose tolerance. METHODS: A total of ten morbidly obese subjects with T2D were recruited to receive a mixed-meal and a glucose-dependent insulinotropic polypeptide (GIP) infusion before and early after (within a median of less than three months) bariatric surgery, and hepatic blood flow and volume (HBV) were measured repeatedly with combined positron emission tomography/MRI. Ten lean non-diabetic individuals served as controls. RESULTS: Bariatric surgery leads to a significant decrease in weight, accompanied with an improved ß-cell function and glucagon-like peptide 1 (GLP-1) secretion, and a reduction in liver volume. Blood flow in portal vein (PV) was increased by 1.65-fold (P = 0.026) in response to a mixed-meal in subjects after surgery, while HBV decreased in all groups (P < 0.001). When the effect of GIP infusion was tested separately, no change in hepatic arterial and PV flow was observed, but HBV decreased as seen during the mixed-meal test. CONCLUSIONS/INTERPRETATION: Early after bariatric surgery, PV flow response to a mixed-meal is augmented, improving digestion and nutrient absorption. GIP influences the post-prandial reduction in HBV thereby diverting blood to the extrahepatic sites.

11.
Physiol Rep ; 6(8): e13685, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29673130

RESUMO

The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, and affects ß-cell turnover. This study aimed at evaluating if some of the beneficial effects of GIP on glucose homeostasis can be explained by modulation of islet blood flow. Anesthetized Sprague-Dawley rats were infused intravenously with different doses of GIP (10, 20, or 60 ng/kg*min) for 30 min. Subsequent organ blood flow measurements were performed with microspheres. In separate animals, islets were perfused ex vivo with GIP (10-6 -10-12  mol/L) during normo- and hyperglycemia and arteriolar responsiveness was recorded. The highest dose of GIP potentiated insulin secretion during hyperglycemia, but had no effect in normoglycemic rats. The highest GIP concentration decreased blood perfusion of whole pancreas, pancreatic islets, duodenum, colon, liver and kidneys. The decrease in blood flow was unaffected by ganglion blockade or adenosine receptor inhibition. In contrast to this, in single perfused islets GIP induced a dose-dependent arteriolar dilation. Thus, high doses of GIP exert a direct dilatory effect on islet arterioles in isolated islets, but induce a generalized vasoconstriction in splanchnic organs, including the whole pancreas and islets, in vivo. The latter effect is unlikely to be mediated by adenosine, the autonomic nervous system, or endothelial mediators.


Assuntos
Polipeptídeo Inibidor Gástrico/farmacologia , Hiperglicemia/sangue , Secreção de Insulina/efeitos dos fármacos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Animais , Glicemia , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
12.
JCI Insight ; 2(21)2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29093273

RESUMO

The secretion of insulin and glucagon from the pancreas and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) from the gastrointestinal tract is essential for glucose homeostasis. Several novel treatment strategies for type 2 diabetes (T2D) mimic GLP-1 actions or inhibit incretin degradation (DPP4 inhibitors), but none is thus far aimed at increasing the secretion of endogenous incretins. In order to identify new potential therapeutic targets for treatment of T2D, we performed a meta-analysis of a GWAS and an exome-wide association study of circulating insulin, glucagon, GIP, and GLP-1 concentrations measured during an oral glucose tolerance test in up to 7,828 individuals. We identified 6 genome-wide significant functional loci associated with plasma incretin concentrations in or near the SLC5A1 (encoding SGLT1), GIPR, ABO, GLP2R, F13A1, and HOXD1 genes and studied the effect of these variants on mRNA expression in pancreatic islet and on metabolic phenotypes. Immunohistochemistry showed expression of GIPR, ABO, and HOXD1 in human enteroendocrine cells and expression of ABO in pancreatic islets, supporting a role in hormone secretion. This study thus provides candidate genes and insight into mechanisms by which secretion and breakdown of GIP and GLP-1 are regulated.


Assuntos
Células Enteroendócrinas/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Variação Genética , Peptídeo 1 Semelhante ao Glucagon/genética , Glucagon/metabolismo , Insulina/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Dipeptidil Peptidase 4/efeitos dos fármacos , Células Enteroendócrinas/patologia , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Hormônios Gastrointestinais , Trato Gastrointestinal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Glucose/metabolismo , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/genética , Humanos , Incretinas/metabolismo , Insulina/genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Mensageiro/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Transportador 1 de Glucose-Sódio/genética
13.
Sci Rep ; 7(1): 90, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273890

RESUMO

Glucagon is the main counterregulatory hormone in the body. Still, the mechanism involved in the regulation of glucagon secretion from pancreatic alpha cells remains elusive. Dysregulated glucagon secretion is common in patients with Cystic Fibrosis (CF) that develop CF related diabetes (CFRD). CF is caused by a mutation in the Cl- channel Cystic fibrosis transmembrane conductance regulator (CFTR), but whether CFTR is present in human alpha cells and regulate glucagon secretion has not been investigated in detail. Here, both human and mouse alpha cells showed CFTR protein expression, whereas CFTR was absent in somatostatin secreting delta cells. CFTR-current activity induced by cAMP was measured in single alpha cells. Glucagon secretion at different glucose levels and in the presence of forskolin was increased by CFTR-inhibition in human islets, whereas depolarization-induced glucagon secretion was unaffected. CFTR is suggested to mainly regulate the membrane potential through an intrinsic alpha cell effect, as supported by a mathematical model of alpha cell electrophysiology. In conclusion, CFTR channels are present in alpha cells and act as important negative regulators of cAMP-enhanced glucagon secretion through effects on alpha cell membrane potential. Our data support that loss-of-function mutations in CFTR contributes to dysregulated glucagon secretion in CFRD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Secretoras de Glucagon/citologia , Glucagon/metabolismo , Animais , Células Cultivadas , Colforsina/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Glucose/farmacologia , Humanos , Masculino , Potenciais da Membrana , Camundongos , Pessoa de Meia-Idade , Mutação , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/efeitos dos fármacos , Células Secretoras de Somatostatina/metabolismo
14.
Endocr Connect ; 6(3): 179-187, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28258126

RESUMO

OBJECTIVE: Meal ingestion is followed by a redistribution of blood flow (BF) within the splanchnic region contributing to nutrient absorption, insulin secretion and glucose disposal, but factors regulating this phenomenon in humans are poorly known. The aim of the present study was to evaluate the organ-specific changes in BF during a mixed-meal and incretin infusions. DESIGN: A non-randomized intervention study of 10 healthy adults to study splanchnic BF regulation was performed. METHODS: Effects of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) infusions and mixed-meal were tested in 10 healthy, glucose tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and pancreatic BF and blood volume (BV) were measured with 15O-water and 15O-carbon monoxide, respectively. RESULTS: Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect of GLP-1. CONCLUSION: Together, our data suggest that meal ingestion leads to increases in pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal blood flow.

15.
Peptides ; 90: 78-82, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28242256

RESUMO

Gastric bypass surgery results in remission of type 2 diabetes in the majority of patients. The incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) have been implicated in the observed remission. Most knowledge so far has been generated in obese subjects. To isolate the surgical effects of gastric bypass on metabolism and hormone responses from the confounding influence of obesity, T2D, or food intake, we performed gastric bypass in lean pigs, using sham-operated and pair-fed pigs as controls. Thus, pigs were subjected to Roux-en-Y gastric bypass (RYGB) or sham surgery and oral glucose tolerance tests (OGTT). RYGB pigs and sham pigs exhibited similar basal and 120-min glucose levels in response to the OGTT. However, RYGB pigs had approximately 1.6-fold higher 30-min glucose (p<0.01). Early insulin release (EIR) was enhanced approximately 3.5-fold in the RYGB pigs (p<0.01). Furthermore, GIP release, both acute and sustained release (p<0.001 and p<0.01, respectively), was increased approximately 2.5-fold and 1.4-fold, respectively, in RYGB pigs. Although total GLP-1 release increased approximately 2.1-fold after RYGB (p<0.001), active GLP-1 was 33% lower (p<0.01). Interestingly basal DPP4-activity was approximately 3.2-fold higher in RYGB pigs (p<0.001). In conclusion, RYGB in lean pigs increases the response of GIP, total GLP-1, and insulin, but reduces levels of active GLP-1 in response to an oral glucose load. These data challenge the role of active GLP-1 as a contributor to remission from diabetes after RYGB.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/cirurgia , Feminino , Derivação Gástrica/efeitos adversos , Polipeptídeo Inibidor Gástrico/genética , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Teste de Tolerância a Glucose , Humanos , Insulina/genética , Resistência à Insulina/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/cirurgia , Sus scrofa
16.
PLoS One ; 12(3): e0173137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257455

RESUMO

BACKGROUND: A growing body of literature on Roux-en-Y gastric bypass surgery (RYGB) has generated inconclusive results on the mechanism underlying the beneficial effects on weight loss and glycaemia, partially due to the problems of designing clinical studies with the appropriate controls. Moreover, RYGB is only performed in obese individuals, in whom metabolism is perturbed and not completely understood. METHODS: In an attempt to isolate the effects of RYGB and its effects on normal metabolism, we investigated the effect of RYGB in lean pigs, using sham-operated pair-fed pigs as controls. Two weeks post-surgery, pigs were subjected to an intravenous glucose tolerance test (IVGTT) and circulating metabolites, hormones and lipids measured. Bile acid composition was profiled after extraction from blood, faeces and the gallbladder. RESULTS: A similar weight development in both groups of pigs validated our experimental model. Despite similar changes in fasting insulin, RYGB-pigs had lower fasting glucose levels. During an IVGTT RYGB-pigs had higher insulin and lower glucose levels. VLDL and IDL were lower in RYGB- than in sham-pigs. RYGB-pigs had increased levels of most amino acids, including branched-chain amino acids, but these were more efficiently suppressed by glucose. Levels of bile acids in the gallbladder were higher, whereas plasma and faecal bile acid levels were lower in RYGB- than in sham-pigs. CONCLUSION: In a lean model RYGB caused lower plasma lipid and bile acid levels, which were compensated for by increased plasma amino acids, suggesting a switch from lipid to protein metabolism during fasting in the immediate postoperative period.


Assuntos
Derivação Gástrica/efeitos adversos , Insulina/metabolismo , Obesidade/metabolismo , Obesidade/cirurgia , Animais , Glicemia , Modelos Animais de Doenças , Jejum/sangue , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Obesidade/sangue , Obesidade/fisiopatologia , Suínos , Redução de Peso/fisiologia
17.
Diabetes ; 66(4): 880-885, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28096259

RESUMO

Bariatric surgery results in notable weight loss and alleviates hyperglycemia in patients with type 2 diabetes (T2D). We aimed to characterize the vascular effects of a mixed meal and infusion of exogenous glucose-dependent insulinotropic polypeptide (GIP) in the splanchnic region in 10 obese patients with T2D before and after bariatric surgery and in 10 lean control subjects. The experiments were carried out on two separate days. Pancreatic and intestinal blood flow (BF) were measured at baseline, 20 min, and 50 min with 15O-water by using positron emission tomography and MRI. Before surgery, pancreatic and intestinal BF responses to a mixed meal did not differ between obese and lean control subjects. Compared with presurgery, the mixed meal induced a greater increase in plasma glucose, insulin, and GIP concentrations after surgery, which was accompanied by a marked augmentation of pancreatic and intestinal BF responses. GIP infusion decreased pancreatic but increased small intestinal BF similarly in all groups both before and after surgery. Taken together, these results demonstrate that bariatric surgery leads to enhanced splanchnic vascular responses as a likely consequence of rapid glucose appearance and GIP hypersecretion.


Assuntos
Cirurgia Bariátrica , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Obesidade/cirurgia , Circulação Esplâncnica/fisiologia , Glicemia/efeitos dos fármacos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Insulina/metabolismo , Intestinos/irrigação sanguínea , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Radioisótopos de Oxigênio , Pâncreas/irrigação sanguínea , Tomografia por Emissão de Pósitrons , Período Pós-Prandial , Circulação Esplâncnica/efeitos dos fármacos
18.
Surg Obes Relat Dis ; 13(2): 234-242, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27894746

RESUMO

OBJECTIVE: To study the immediate effects of Roux-en-Y gastric bypass (RYGB) on glucose homeostasis, insulin, and incretin responses to mixed-meal tests compared with the effects of calorie restriction (CR). SETTING: University-affiliated bariatric surgery clinic. BACKGROUND: RYGB induces remission of type 2 diabetes (T2D) long before significant weight loss occurs. The time course and underlying mechanisms of this remission remain enigmatic. A prevailing theory is that secretory patterns of incretin hormones are altered due to rearrangement of the gastrointestinal tract. To what extent reduced calorie intake contributes to the remission of T2D is unknown. METHODS: Nine normoglycemic patients and 10 T2D patients were subjected to mixed-meal tests (MMT) 4 weeks before surgery before initiation of a very low calorie diet regimen (MMT-4 w), 1 day before surgery on a very low calorie diet regimen (MMT-1 d), on the morning of the first day after surgery (MMT+1 d; first postsurgical meal), and 6 weeks after surgery (MMT+6 w). Insulin, glucose, active glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were measured. RESULTS: CR lowered insulin in T2D patients, whereas glucose, GIP, and GLP-1 were unaffected. RYGB immediately increased plasma insulin and GIP. The GLP-1 response was delayed compared with the GIP response. T2D patients exhibited lower insulin responses after RYGB compared with normoglycemic patients. GIP responses were similar in both groups at all occasions, whereas T2D patients displayed markedly elevated GLP-1 responses 6 weeks after RYGB. Glucose was unaffected by CR and RYGB in both groups. Insulin sensitivity was unaffected by CR but improved with RYGB. CONCLUSION: RYGB exerts powerful and immediate effects on insulin and incretin responses to food, independently of changes caused by CR.


Assuntos
Restrição Calórica , Diabetes Mellitus Tipo 2/terapia , Derivação Gástrica , Incretinas/metabolismo , Insulina/metabolismo , Adulto , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Homeostase/fisiologia , Humanos , Hipoglicemiantes/uso terapêutico , Insulinas/uso terapêutico , Refeições , Obesidade/cirurgia
19.
Surg Obes Relat Dis ; 11(6): 1237-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26143297

RESUMO

BACKGROUND: Super-obesity, a body mass index>50 kg/m(2), is difficult to treat. Many studies have focused on the anatomic changes of the intestines; the physiologic background is not clearly identified. It is established that Roux-en-Y gastric bypass (RYGB) augments secretion of glucagon-like peptide-1 (GLP-1), peptide tyrosine tyrosine (PYY), and insulin, but other aspects of gut hormone cell function in the alimentary limb are unknown. OBJECTIVE: To study the effects of laparoscopic RYGB on enteroendocrine cells. SETTING: University-affiliated, high-volume bariatric surgery center. METHODS: Eighteen nondiabetic patients were drawn from the present study (NCT 01514799), randomizing between biliopancreatic (BP) limbs of either 60 cm (BP60) or 200 cm (BP200). Demographic characteristics did not differ at baseline or 12 months. Pouch and jejunal biopsies were obtained intraoperatively and using endoscopy at 12 months. Mucosal height and density of hormone-producing cell populations were assessed and mRNA expression measured with real-time polymerase chain reaction. RESULTS: In perianastomotic jejunum, a 4.9-fold increase in GLP-1 cell density was evident 12 months after RYGB, most pronounced in the BP200-group. The densities of glucose-dependent insulinotropic polypeptide (GIP) cells and PYY immunoreactive cells were doubled after 12 months. GIP mRNA was unaffected, but GLP-1 and PYY mRNA were lower 12 months after RYGB. RYGB had no impact on villi length or density of ghrelin-, cholecystokinin-, neurotensin-, secretin-, or serotonin-producing cells after 12 months. Pouch mucosal height and cell densities of ghrelin-, histamine-, serotonin-, and somatostatin-producing cells remained unaffected by RYGB in both groups. CONCLUSIONS: RYGB selectively increased the density of incretin-producing cell populations in the jejunum. This may provide anatomic explanation for the observed increased plasma levels of incretins.


Assuntos
Derivação Gástrica , Polipeptídeo Inibidor Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fragmentos de Peptídeos/metabolismo , Adulto , Biomarcadores/metabolismo , Glicemia/metabolismo , Índice de Massa Corporal , Contagem de Células , Feminino , Mucosa Gástrica/patologia , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Período Pós-Operatório , Prognóstico , Adulto Jovem
20.
Obes Surg ; 25(1): 180-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25330869

RESUMO

Gastric bypass (GBP) results in rapid type 2 diabetes (T2D) remission in most cases. Consequences of GBP reversal are unknown. A GBP-operated T2D patient was given mixed-meal tests before (MMTpre), 2 months (MMT2-M) and 12 months (MMT12-M) after GBP reversal. Glucose, hormones and metabolite profiles were assessed. MMT2-M displayed slightly lower glucose levels; MMT12-M displayed higher glucose and insulin levels, indicating deteriorating glycaemia. Homeostasis model assessment (HOMA)-ß was higher at MMT2-M, but reduced at MMT12-M. Matsuda index revealed slightly reduced insulin sensitivity at MMT2-M, which deteriorated further at MMT12-M. Markers for metabolic stress and insulin resistance were elevated at MMT12-M. Gastric inhibitory polypeptide (GIP) levels were increased at MMT2-M and decreased at MMT12-M. Glucagon-like peptide-1 (GLP-1) decreased at MMT2-M and further decreased at MMT12-M. In conclusion, in this patient, GBP reversal provoked deteriorating glycaemia and long-term development of insulin resistance.


Assuntos
Anastomose Cirúrgica/métodos , Diabetes Mellitus Tipo 2/cirurgia , Derivação Gástrica , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Seguimentos , Derivação Gástrica/reabilitação , Polipeptídeo Inibidor Gástrico/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Insulina/sangue , Resistência à Insulina , Masculino , Refeições , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA