Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Res ; 239(Pt 1): 117211, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778604

RESUMO

The development of the chemical industry has led to a boom in daily consumption and convenience, but has also led to the release of large amounts of organic pollutants, such as petroleum hydrocarbons, plastics, pesticides, and dyes. These pollutants are often recalcitrant to degradation in the environment, whereby the most problematic compounds may even lead to carcinogenesis, teratogenesis and mutagenesis in animals and humans after accumulation in the food chain. Microbial degradation of organic pollutants is efficient and environmentally friendly, which is why it is considered an ideal method. Numerous studies have shown that Pseudomonas aeruginosa is a powerful platform for the remediation of environmental pollution with organic chemicals due to its diverse metabolic networks and its ability to secrete biosurfactants to make hydrophobic substrates more bioavailable, thereby facilitating degradation. In this paper, the mechanisms and methods of the bioremediation of environmental organic pollutants (EOPs) by P. aeruginosa are reviewed. The challenges of current studies are highlighted, and new strategies for future research are prospected. Metabolic pathways and critical enzymes must be further deciphered, which is significant for the construction of a bioremediation platform based on this powerful organism.


Assuntos
Poluentes Ambientais , Animais , Humanos , Pseudomonas aeruginosa , Biodegradação Ambiental , Corantes , Cadeia Alimentar
2.
iScience ; 26(6): 106823, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250792

RESUMO

Microplastics (MPs, particle size < 5 mm) are an emerging contaminant in aquatic environment, which have attracted increasing attention worldwide. In this study, a colorimetric method for MPs detection was developed based on gold nanoparticles (AuNPs)-anchored peptides (LCI or TA2), which are able to specifically recognize and adhere to polypropylene (PP) or polystyrene (PS). The AuNPs-anchored peptides accumulated on the surface of MPs, rendering a color change from red to gray-blue and transforming the surface plasmon absorption intensity and wavelength. The designed method presented high selectivity, stability, and reproducibility, with a detection range of 2.5-15 µg/mL. The results demonstrated that the developed approach will be valuable in the precise, facile, and cost-effective estimation of MPs in different matrices, regulating the control over MPs pollution and its hazardous impact on health and ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA