Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Commun ; 15(1): 1218, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336956

RESUMO

Renewable electricity powered electrochemical CO2 reduction (CO2R) offers a valuable method to close the carbon cycle and reduce our overreliance on fossil fuels. However, high purity CO2 is usually required as feedstock, which potentially decreases the feasibility and economic viability of the process. Direct conversion of flue gas is an attractive option but is challenging due to the low CO2 concentration and the presence of O2 impurities. As a result, up to 99% of the applied current can be lost towards the undesired oxygen reduction reaction (ORR). Here, we show that acidic electrolyte can significantly suppress ORR on Cu, enabling generation of multicarbon products from simulated flue gas. Using a composite Cu and carbon supported single-atom Ni tandem electrocatalyst, we achieved a multicarbon Faradaic efficiency of 46.5% at 200 mA cm-2, which is ~20 times higher than bare Cu under alkaline conditions. We also demonstrate stable performance for 24 h with a multicarbon product full-cell energy efficiency of 14.6%. Strikingly, this result is comparable to previously reported acidic CO2R systems using pure CO2. Our findings demonstrate a potential pathway towards designing efficient electrolyzers for direct conversion of flue gas to value-added chemicals and fuels.

2.
J Clin Transl Hepatol ; 12(2): 162-171, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343613

RESUMO

Background and Aims: SARS-CoV-2 vaccines-associated autoimmune liver diseases have been reported in several case reports. However, the safety and immunogenicity after primary and booster inactivated SARS-CoV-2 vaccination in patients with autoimmune liver diseases (AILD) is still unknown. Methods: Eighty-four patients with AILD were prospectively followed up after the second dose (primary) of inactivated SARS-CoV-2 vaccine. Some of them received the third dose (booster) of inactivated vaccine. Adverse events (AEs), autoimmune activation, and liver inflammation exacerbation after primary and booster vaccination were recorded. Meanwhile, dynamics of antireceptor-binding-domain IgG (anti-RBD-IgG), neutralizing antibodies (NAbs) and RBD-specific B cells responses were evaluated. Results: The overall AEs in AILD patients after primary and booster vaccination were 26.2% and 13.3%, respectively. The decrease of C3 level and increase of immunoglobulin light chain κ and λ levels were observed in AILD patients after primary vaccination, however, liver inflammation was not exacerbated, even after booster vaccination. Both the seroprevalence and titers of anti-RBD-IgG and NAbs were decreased over time in AILD patients after primary vaccination. Notably, the antibody titers were significantly elevated after booster vaccination (10-fold in anti-RBD-IgG and 7.4-fold in NAbs, respectively), which was as high as in healthy controls. Unfortunately, the inferior antibody response was not enhanced after booster vaccination in patients with immunosuppressants. Changes of atypical memory B cells were inversely related to antibody levels, which indicate that the impaired immune memory was partially restored partly by the booster vaccination. Conclusions: The well tolerability and enhanced humoral immune response of inactivated vaccine supports an additional booster vaccination in AILD patients without immunosuppressants.

3.
Gels ; 9(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37623090

RESUMO

We have previously demonstrated the potential of gelatin films as a memory device, offering a novel approach for writing, reading, and erasing through the manipulation of gelatin structure and bound water content. Here, we discovered that incorporating a bacteriorhodopsin (BR)-lipid membrane into the gelatin devices can further increase the electron conductivity of the polypeptide-bound water network and the ON/OFF ratio of the device by two folds. Our photocurrent measurements show that the BR incorporated in the membrane sandwiched in a gelatin device can generate a net proton flow from the counter side to the deposited side of the membrane. This leads to the establishment of non-electroneutrality on the gelatin films adjacent to the BR-incorporated membrane. Our Raman spectroscopy results show that BR proton pumping in the ON state gelatin device increases the bound water presence and promotes polypeptide unwinding compared to devices without BR. These findings suggest that the non-electroneutrality induced by BR proton pumping can increase the extent of polypeptide unwinding within the gelatin matrix, consequently trapping more bound water within the gelatin-bound water network. The resulting rise in hydrogen bonds could expand electron transfer routes, thereby enhancing the electron conductivity of the memory device in the ON state.

4.
Nat Commun ; 14(1): 4093, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433804

RESUMO

Bacteria possess elaborate systems to manage reactive oxygen and nitrogen species (ROS) arising from exposure to the mammalian immune system and environmental stresses. Here we report the discovery of an ROS-sensing RNA-modifying enzyme that regulates translation of stress-response proteins in the gut commensal and opportunistic pathogen Enterococcus faecalis. We analyze the tRNA epitranscriptome of E. faecalis in response to reactive oxygen species (ROS) or sublethal doses of ROS-inducing antibiotics and identify large decreases in N2-methyladenosine (m2A) in both 23 S ribosomal RNA and transfer RNA. This we determine to be due to ROS-mediated inactivation of the Fe-S cluster-containing methyltransferase, RlmN. Genetic knockout of RlmN gives rise to a proteome that mimics the oxidative stress response, with an increase in levels of superoxide dismutase and decrease in virulence proteins. While tRNA modifications were established to be dynamic for fine-tuning translation, here we report the discovery of a dynamically regulated, environmentally responsive rRNA modification. These studies lead to a model in which RlmN serves as a redox-sensitive molecular switch, directly relaying oxidative stress to modulating translation through the rRNA and the tRNA epitranscriptome, adding a different paradigm in which RNA modifications can directly regulate the proteome.


Assuntos
Enterococcus faecalis , Proteoma , Animais , Espécies Reativas de Oxigênio , Enterococcus faecalis/genética , Proteoma/genética , Estresse Oxidativo/genética , Processamento Pós-Transcricional do RNA , Adenosina , Proteínas de Choque Térmico , Mamíferos
5.
Infect Immun ; 91(4): e0049622, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36912636

RESUMO

Among the unfavorable conditions bacteria encounter within the host is restricted access to essential trace metals such as iron. To overcome iron deficiency, bacteria deploy multiple strategies to scavenge iron from host tissues, with abundant examples of iron acquisition systems being implicated in bacterial pathogenesis. Yet the mechanisms utilized by the major nosocomial pathogen Enterococcus faecalis to maintain intracellular iron balance are poorly understood. In this study, we conducted a systematic investigation to identify and characterize the iron acquisition mechanisms of E. faecalis and to determine their contribution to virulence. Bioinformatic analysis and literature surveys revealed that E. faecalis possesses three conserved iron uptake systems. Through transcriptomics, we discovered two novel ABC-type transporters that mediate iron uptake. While inactivation of a single transporter had minimal impact on the ability of E. faecalis to maintain iron homeostasis, inactivation of all five systems (Δ5Fe strain) disrupted intracellular iron homeostasis and considerably impaired cell growth under iron deficiency. Virulence of the Δ5Fe strain was generally impaired in different animal models but showed niche-specific variations in mouse models, leading us to suspect that heme can serve as an iron source to E. faecalis during mammalian infections. Indeed, heme supplementation restored growth of Δ5Fe under iron depletion and virulence in an invertebrate infection model. This study revealed that the collective contribution of five iron transporters promotes E. faecalis virulence and that the ability to acquire and utilize heme as an iron source is critical to the systemic dissemination of E. faecalis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Transporte Biológico , Enterococcus faecalis , Ferro , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Virulência , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ferro/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos
6.
J Med Virol ; 95(1): e28434, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571260

RESUMO

Heterogeneity of antibody responses has been reported in SARS-CoV-2 vaccination recipients with underlying diseases. We investigated the impact of the presence of comorbidities on the humoral response to SARS-CoV-2 vaccination in patients with chronic disease (PWCD) and assessed the effect of the number of comorbidities on the humoral response to vaccination. In this study, neutralizing antibodies (NAbs) and IgG antibodies against the receptor-binding domain (RBD-IgG) were monitored following a full-course vaccination. In total, 1400 PWCD (82.7%, inactivated vaccines; 17.3%, subunit recombinant vaccine) and 245 healthy controls (65.7% inactivated vaccines, 34.3% subunit recombinant vaccine) vaccinated with inactivated or subunit recombinant SARS-CoV-2 vaccines, were included. The seroconversion and antibody levels of the NAbs and RBD-IgG were different in the PWCD group compared with those in the control group. Chronic hepatitis B (odds ratio [OR]: 0.65; 95% confidence interval [CI]: 0.46-0.93), cancer (OR: 0.65; 95% CI: 0.42-0.99), and diabetes (OR: 0.50; 95% CI: 0.28-0.89) were associated with lower seroconversion of NAbs. Chronic kidney disease (OR: 0.29; 95% CI: 0.11-0.76), cancer (OR: 0.38; 95% CI: 0.23-0.62), and diabetes (OR: 0.37; 95% CI: 0.20-0.69) were associated with lower seroconversion of RBD-IgG. Only the presence of autoimmune disease showed significantly lower NAbs and RBD-IgG titers. Patients with most types of chronic diseases showed similar responses to the controls, but humoral responses were still significantly associated with the presence of ≥2 coexisting diseases. Our study suggested that humoral responses following SARS-CoV-2 vaccination are impaired in patients with certain chronic diseases.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Doença Crônica , China , Anticorpos Neutralizantes , Imunoglobulina G , Vacinação , Anticorpos Antivirais
7.
Front Immunol ; 13: 988004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275639

RESUMO

The antibody and B cell responses after inactivated SARS-CoV-2 vaccination have not been well documented in patients with autoimmune liver disease (AILD). Therefore, we conducted a prospective observational study that included AILD patients and healthy participants as controls between July 1, 2021, and September 30, 2021, at the Second Affiliated Hospital of Chongqing Medical University. All adverse events (AEs) after the COVID-19 vaccination were recorded and graded. Immunoglobulin (Ig)-G antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (anti-RBD-IgG) and neutralizicadng antibodies (NAbs) were tested following full-course vaccination (BBIBP-CorV or CoronaVac). In addition, SARS-CoV-2-specific B cells were detected by flow cytometry. In total, 76 AILD patients and 136 healthy controls (HCs) were included. All AEs were mild and self-limiting, and the incidences were similar between the AILD and HCs. The seropositivity rates of anti-RBD-IgG and NAbs in AILD were 97.4% (100% in HCs, p = 0.13) and 63.2% (84.6% in HCs, p < 0.001), respectively. The titers of anti-RBD-IgG and NAbs were significantly lower in AILD patients than those in HCs. After adjusting for confounders, immunosuppressive therapy was an independent risk factor for low-level anti-RBD-IgG (adjusted odds ratio [aOR]: 4.7; 95% confidence interval [CI], 1.5-15.2; p = 0.01) and a reduced probability of NAbs seropositivity (aOR, 3.0; 95% CI, 1.0-8.9; p = 0.04) in AILD patients. However, regardless of immunosuppressants, the SARS-CoV-2-specific memory B cells responses were comparable between the AILD and HC groups. Our results suggest that inactivated SARS-CoV-2 vaccines (BBIBP-CorV and CoronaVac) are safe, but their immunogenicity is compromised in patients with AILD. Moreover, immunosuppressants are significantly associated with poor antibody responses to the SARS-CoV-2 vaccines. These results could inform physicians and policymakers about decisions on screening the populations at higher risk of poor antibody responses to SARS-CoV-2 vaccines and providing additional vaccinations in patients with AILD.


Assuntos
Doenças Autoimunes , COVID-19 , Hepatopatias , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Imunossupressores/efeitos adversos , Formação de Anticorpos , Anticorpos Antivirais , Imunoglobulina G
8.
Aging (Albany NY) ; 14(17): 7137-7155, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36107005

RESUMO

OBJECTIVE: To investigate the mechanism of alanine aminotransferase 1 (ALT1) in the progression of HCC, the differentially expressed proteins (DEPs) in the ALT1 interaction network were identified by targeted proteomic analysis. METHODS: Wound healing and transwell assays were conducted to assess the effect of ALT1 on cellular migration and invasion. Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays were performed to identify alterations in proliferation and apoptosis. After coimmunoprecipitation processing, mass spectrometry with iso-baric tags for relative and absolute quantitation was utilized to explore the protein interactions in ALT1 knockdown HepG2 cells. RESULTS: The results showed that ALT1 knockdown inhibits the migration, invasion, proliferation of HepG2 cells, and promotes apoptosis. A total of 116 DEPs were identified and the bioinformatics analysis suggested that the ALT1-interacting proteins were primarily associated with cellular and metabolic processes. Knockdown of ALT1 in HepG2 cells reduced the expression of Ki67 and epithelial cell adhesion molecule (EP-CAM), while the expression of apoptosis-stimulating protein 2 of p53 (ASPP2) was increased significantly. Suppression of the ALT1 and EP-CAM expression contributed to alterations in epithelial-mesenchymal transition (EMT) -associated markers and matrix metalloproteinases (MMPs). Additionally, inhibition of ALT1 and Ki67 also decreased the expression of apoptosis and proliferation factors. Furthermore, inhibition of ALT1 and ASPP2 also changed the expression of P53, which may be the signaling pathway by which ALT regulates these biological behaviors. CONCLUSIONS: This study indicated that the ALT1 protein interaction network is associated with the biological behaviors of HepG2 cells via the p53 signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante/metabolismo , Alanina Transaminase/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metaloproteinases da Matriz/metabolismo , Proteômica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Sci Total Environ ; 839: 156209, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644381

RESUMO

The 'enzyme latch' theory believes that oxygen constraints on phenol oxidase can restrain the activity of hydrolytic enzymes responsible for decomposition, while the 'iron (Fe) gate' theory suggests that Fe oxidation can decrease phenol oxidase activity and enhance Fe-lignin complexation under oxygen exposure. The objective of this study was to explore the roles of the 'enzyme latch' and 'Fe gate' mechanisms in regulating soil organic carbon (SOC) sequestration in a rice-wheat cropping system subjected to six fertilization treatments: control (CT), chemical fertilizer (CF), CF plus manure (CFM), CF plus straw (CFS), CF plus manure and straw (CFMS), and CF plus organic-inorganic compound fertilizer (OICF). Soil samples were collected after the rice and wheat harvests and wet sieved into large macroaggregates, small macroaggregates, microaggregates, and silt and clay particles. Variations in amorphous and free Fe oxides, Fe-bound organic carbon and phenol oxidase activity were examined. After nine years, compared with the initial soil, the activation degree of free Fe oxides increased by 1.3- to 1.6-fold and the topsoil SOC stock increased by 13-61% across all treatments. Amorphous Fe oxide content, phenol oxidase activity and aggregate mean-weight diameter were higher after the wheat harvest than after the rice harvest. Amorphous Fe oxide content was positively correlated with Fe-bound organic carbon content (P < 0.001) but negatively correlated with phenol oxidase activity (P < 0.001). Therefore, seasonal alternation of wetting and drying can progressively drive the rejuvenation of Fe oxides and simultaneously affect the activity of phenol oxidase. Oxidative precipitation of amorphous Fe oxides promoted the formation of organo-Fe complexes and macroaggregates, while flooding of the paddies decreased the activity of phenol oxidase, thereby resulting in year-round hindered decomposition. Organic fertilization strengthened the roles of the 'Fe gate' and 'enzyme latch' mechanisms, and thus accelerated SOC sequestration in the rice-wheat cropping system.


Assuntos
Sequestro de Carbono , Oryza , Agricultura/métodos , Carbono , Fertilizantes/análise , Ferro , Esterco , Monofenol Mono-Oxigenase , Compostos Orgânicos , Óxidos , Oxigênio , Rejuvenescimento , Solo/química , Triticum
10.
Virol J ; 19(1): 28, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144643

RESUMO

BACKGROUND: Some cytokine signaling pathways can interact with interferon (IFN)-α pathway and thus regulate cell responses to IFN-α. Levels of the pro-inflammatory cytokine interleukin-17A (IL-17A) were found to be elevated in both the peripheral blood and liver in chronic hepatitis B (CHB) patients. However, how IL-17A affects the anti-HBV activity of IFN-α remains unclear. METHODS: The effects of IL-17A on anti-HBV activity of IFN-α were evaluated in HBV-expressing HepG2 cells (HepG2-HBV1.3) with IL-17A pretreatment and IFN-α stimulation. Culture supernatant levels of HBsAg, HBeAg, and HBV DNA, or intracellular expression of HBsAg and HBcAg were detected by ELISA, real-time quantitative PCR (RT-qPCR), or western blotting (WB). The expression of canonical IFN-α signaling pathway components, including the interferon-α/ß receptor (IFNAR), Janus Kinase 1 (JAK1), Tyrosine Kinase 2 (TYK2), the Interferon Stimulated Gene Factor 3 complex (ISGF3) and IFN-stimulated genes (ISGs), was also examined by RT-qPCR, Immunofluorescence or WB. The effects of IL-17A were further investigated by the suppression of the IL-17A pathway with a TRAF6 inhibitor. RESULTS: Compared to IFN-α stimulation alone, IL-17A pretreatment followed by IFN-α stimulation increased the levels of HBsAg, HBeAg, and HBV DNA, and decreased the levels of ISGF3 complex (phosphorylated (p)-signal transducer and activator of transcription (STAT1)/p-STAT2/IRF9) and antiviral-related ISGs (ISG15, ISG20 and Mx1). Interestingly, IL-17A pretreatment increased the expression of suppressor of cytokine signaling (SOCS) 1, SOCS3 and USP18, which were also the ISGs negatively regulating activity of ISGF3. Moreover, IFNAR1 protein expression declined more sharply in the group with IL-17A pretreatment than in the group with IFN-α stimulation alone. Blocking the IL-17A pathway reversed the effects of IL-17A on the IFN-α-induced activation of ISGF3 and anti-HBV efficacy. CONCLUSIONS: Our results demonstrate that IL-17A pretreatment could attenuate IFN-α-induced anti-HBV activity by upregulating negative regulators of the critical transcriptional ISGF3 complex. Thus, this might be a potential target for improving response to IFN-α therapy.


Assuntos
Vírus da Hepatite B , Interferon-alfa , Células Hep G2 , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interleucina-17 , Fator de Transcrição STAT1/genética , Ubiquitina Tiolesterase
11.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885925

RESUMO

Highly expressible bacteriorhodopsin (HEBR) is a light-triggered protein (optogenetic protein) that has seven transmembrane regions with retinal bound as their chromophore to sense light. HEBR has controllable photochemical properties and regulates activity on proton pumping. In this study, we generated HEBR protein and incubated with lung cancer cell lines (A549 and H1299) to evaluate if there was a growth-inhibitory effect with or without light illumination. The data revealed that the HEBR protein suppressed cell proliferation and induced the G0/G1 cell cycle arrest without light illumination. Moreover, the migration abilities of A549 and H1299 cells were reduced by ~17% and ~31% after incubation with HEBR (40 µg/mL) for 4 h. The Snail-1 gene expression level of the A549 cells was significantly downregulated by ~50% after the treatment of HEBR. In addition, HEBR significantly inhibited the gene expression of Sox-2 and Oct-4 in H1299 cells. These results suggested that the HEBR protein may inhibit cell proliferation and cell cycle progression of lung cancer cells, reduce their migration activity, and suppress some stemness-related genes. These findings also suggested the potential of HEBR protein to regulate the growth and migration of tumor cells, which may offer the possibility for an anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Bacteriorodopsinas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Antineoplásicos/metabolismo , Bacteriorodopsinas/genética , Movimento Celular/efeitos dos fármacos , Humanos , Engenharia de Proteínas
12.
Infect Immun ; 89(11): e0036521, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424750

RESUMO

Second messenger nucleotides are produced by bacteria in response to environmental stimuli and play a major role in the regulation of processes associated with bacterial fitness, including but not limited to osmoregulation, envelope homeostasis, central metabolism, and biofilm formation. In this study, we uncovered the biological significance of c-di-AMP in the opportunistic pathogen Enterococcus faecalis by isolating and characterizing strains lacking genes responsible for c-di-AMP synthesis (cdaA) and degradation (dhhP and gdpP). Using complementary approaches, we demonstrated that either complete loss of c-di-AMP (ΔcdaA strain) or c-di-AMP accumulation (ΔdhhP, ΔgdpP, and ΔdhhP ΔgdpP strains) drastically impaired general cell fitness and virulence of E. faecalis. In particular, the ΔcdaA strain was highly sensitive to envelope-targeting antibiotics, was unable to multiply and quickly lost viability in human serum or urine ex vivo, and was virtually avirulent in an invertebrate (Galleria mellonella) and in two catheter-associated mouse infection models that recapitulate key aspects of enterococcal infections in humans. In addition to evidence linking these phenotypes to altered activity of metabolite and peptide transporters and inability to maintain osmobalance, we found that the attenuated virulence of the ΔcdaA strain also could be attributed to a defect in Ebp pilus production and activity that severely impaired biofilm formation under both in vitro and in vivo conditions. Collectively, these results demonstrate that c-di-AMP signaling is essential for E. faecalis pathogenesis and a desirable target for drug development.


Assuntos
Fosfatos de Dinucleosídeos/fisiologia , Enterococcus faecalis/patogenicidade , Animais , Biofilmes , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Positivas/etiologia , Humanos , Virulência
13.
Braz J Microbiol ; 51(4): 1665-1672, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32557281

RESUMO

With the high-frequency use or abuse of antifungal drugs, the crisis of drug-resistant fungi continues to increase worldwide; in particular, the infection of drug-resistant Candida albicans brings the great challenge to the clinical treatment. Therefore, to decelerate the spread of this resistance, it is extremely urgent to facilitate the new antifungal targets with novel drugs. Phosphopantetheinyl transferases PPTases (Ppt2 in Candida albicans) had been identified in bacterium and fungi and mammals, effects as a vital enzyme in the metabolism of organisms in C. albicans. Ppt2 transfers the phosphopantetheinyl group of coenzyme A to the acyl carrier protein Acp1 in mitochondria for the synthesis of lipoic acid that is essential for fungal respiration, so making Ppt2 an ideal target for antifungal drugs. In this study, 110 FDA-approved drugs were utilized to investigate the Ppt2 inhibition against drug-resistant Candida albicans by the improved fluorescence polarization experiments, which have enough druggability and structural variety under the novel strategy of drug repurposing. Thereinto, eight agents revealed the favourable Ppt2 inhibitory activities. Further, broth microdilution assay of incubating C. albicans with these eight drugs showed that pterostilbene, procyanidine, dichlorophen and tea polyphenol had the superior MIC values. In summary, these findings provide more valuable insight into the treatment of drug-resistant C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Candida albicans/enzimologia , Reposicionamento de Medicamentos , Proteínas Fúngicas/antagonistas & inibidores , Testes de Sensibilidade Microbiana
14.
Exp Ther Med ; 19(1): 67-78, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853274

RESUMO

The role of γδ T cells in acute hepatitis B virus (HBV) infection remains unclear. For the present study, a mouse model of acute HBV infection was constructed using hydrodynamic injection-based transfection of an HBV DNA plasmid (pHBV). Subsequent changes in the percentages of γδ T cells, expression of activation molecules (CD25 and CD69) and the production of the inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor-α (TNF-α) by liver γδ T cells were investigated using fluorescence-activated cell sorting (FACS). Additionally, the immune responses in the mouse liver were evaluated dynamically by measuring cytokine mRNA expression (IFN-α, IFN-ß, IFN-γ or TNF-α) using reverse transcription-quantitative PCR, and other populations of immune cells, including CD4+T, CD8+T, natural killer (NK) or natural killer T (NKT) cells, using FACS. On day 1 following acute HBV infection, the percentage of liver γδ T cells was significantly increased along with the high expression of HBV markers. Additionally, liver γδ T cells displayed peak expression of the activation marker CD69 and peak IFN-γ production within this timeframe. IFN-ß mRNA expression and the percentage of NK cells were elevated significantly on day 1 in liver tissues. However, there were no significant changes in the spleen or peripheral γδ T cells. Therefore, these data suggested that during the early stages of acute HBV infection, significantly increased numbers of liver γδ T cells may be involved in the enhanced immune response to the increased expression of HBV markers in the liver.

15.
Sci Rep ; 6: 38944, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941854

RESUMO

The effects of mineral nutrient on banana wilt disease, which are the result of a competitive relationship between host plants and pathogens, can affect the interactions of plants with microorganisms. To investigate the mineral nutrient effect, hydroponic experiments were conducted in glasshouse containing combinations of low, medium, and high iron (Fe) and boron (B) concentrations, followed by pathogen inoculation. High Fe and B treatment significantly reduced the disease index and facilitated plants growth. With increasing Fe and B concentrations, more Fe and B accumulated in plants. High Fe and B treatment dramatically reduced the Fusarium oxysporum conidial germination rate and fungal growth compared with the other two treatments, contributing to decreased numbers of the pathogen on infected plants. Furthermore, High Fe and B treatment decreased the fusaric acid production of F. oxysporum in vitro and also increased the mannitol content of the plants, which in turn decreased the phytotoxin production of infected plants and finally reduced the disease index due to the virulence factor of phytotoxin. Taken together, these results indicate that Fe and B play a multifunctional role in reducing the severity of diseases by affecting the growth of F. oxysporum and the responses between plants and pathogens.


Assuntos
Boro/farmacologia , Fusariose/microbiologia , Ferro/farmacologia , Musa/crescimento & desenvolvimento , Musa/microbiologia , Doenças das Plantas/microbiologia , Fusariose/prevenção & controle , Fusarium/fisiologia , Germinação , Doenças das Plantas/prevenção & controle , Esporos Fúngicos/fisiologia
16.
PLoS One ; 10(3): e0120086, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774808

RESUMO

BACKGROUND: γδ T cells play an important role in infectious, autoimmune, or neoplastic diseases. Here, a study was conducted to investigate the dynamic changes in phenotype and function of peripheral γδ T cells in patients with chronic hepatitis B (CHB) during pegylated-interferon (pegIFN)-α treatment, and to explore their roles in IFN-α therapy. METHODS: Total 15 CHB patients with pegIFN-α therapy and 6 healthy controls (HC) were enrolled in this study. Flow cytometry was used for the study of frequency of peripheral γδ T cells, subtypes, effector or memory γδ T cells, and also the IFN-γ+, TNF-α+, CD107a+ or Granzyme B+ γδ T cells in 10 patients at week 0, 4, 8, 12, 24, 36 and 48 of treatment. Another 5 CHB patients and 6 HC were recruited for the γδ T cell isolation, and gene expression in γδ T cells was evaluated before or after IFN-α treatment in vitro. RESULTS: Although γδT cells decreased in CHB patients during pegIFN-α therapy, their capacities to produce TNF-α and to express CD107a were enhanced. More effector γδT cells (CD27-CD45RA+) were found in the response group than in non-response group. Furthermore, IFN-α boosted the expression of Mx2 and cytokine genes in γδT cells from CHB patients in vitro. CONCLUSION: IFN-α could enhance the cytokine production or cytotoxicity potential of γδT cells in vivo and in vitro. The enhanced function of γδT cells might contribute to the effect of IFN-α treatment.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite B/imunologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/imunologia , Interferon-alfa/uso terapêutico , Subpopulações de Linfócitos T/imunologia , Adulto , Antivirais/farmacologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Citocinas/genética , Citocinas/metabolismo , DNA Viral , Expressão Gênica , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Humanos , Imunofenotipagem , Interferon-alfa/farmacologia , Contagem de Linfócitos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas de Resistência a Myxovirus/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral , Adulto Jovem
17.
World J Microbiol Biotechnol ; 30(4): 1399-408, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24282097

RESUMO

Fusarium oxysporum f.sp. cubense (FOC) is a causal agent of vascular wilt and leaf chlorosis of banana plants. Chloroses resulting from FOC occur first in the lowest leaves of banana seedlings and gradually progress upward. To investigate the responses of different leaf positions to FOC infection, hydroponic experiments with FOC inoculation were conducted in a greenhouse. Fusarium-infected seedlings exhibited a decrease in net photosynthesis rate, stomatal conductance, and transpiration rate of all leaves. The wilting process in Fusarium-infected seedlings varied with leaf position. Measurements of the maximum photochemical efficiency of photosystem II (F(V)/F(max) and visualization with transmission electron microscopy showed a positive correlation between chloroplast impairment and severity of disease symptoms. Furthermore, results of malondialdehyde content and relative membrane conductivity measurements demonstrated that the membrane system was damaged in infected leaves. Additionally, the activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were increased and total soluble phenolic compounds were significantly accumulated in the leaves of infected plants. The structural and biochemical changes of infected plants was consistent with plant senescence. As the FOC was not detected in infected leaves, we proposed that the chloroplast and membrane could be damaged by fusaric acid produced by Fusarium. During the infection, fusaric acid was first accumulated in the lower leaves and water-soluble substances in the lower leaves could dramatically enhance fusaric acid production. Taken together, the senescence of infected banana plants was induced by Fusarium infection with fusaric acid production and the composition of different leaf positions largely contribute to the particular senescence process.


Assuntos
Ácido Fusárico/toxicidade , Fusarium/crescimento & desenvolvimento , Musa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Ácido Fusárico/metabolismo , Fusarium/metabolismo , Microscopia Eletrônica de Transmissão , Fotossíntese/efeitos dos fármacos
18.
PLoS One ; 6(11): e27496, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110662

RESUMO

BACKGROUND: The Hepatitis C virus (HCV) core protein has been implicated as a potential oncogene or a cofactor in HCV-related hepatocellular carcinoma (HCC), but the underlying mechanisms are unknown. Overactivation of the Wnt/ß-catenin signaling is a major factor in oncogenesis of HCC. However, the pathogenesis of HCV core-associated Wnt/ß-catenin activation remains to be further characterized. Therefore, we attempted to determine whether HCV core protein plays an important role in regulating Wnt/ß-catenin signaling in HCC cells. METHODOLOGY: Wnt/ß-catenin signaling activity was investigated in core-expressing hepatoma cells. Protein and gene expression were examined by Western blot, immunofluorescence staining, RT-qPCR, and reporter assay. PRINCIPAL FINDINGS: HCV core protein significantly enhances Tcf-dependent transcriptional activity induced by Wnt3A in HCC cell lines. Additionally, core protein increases and stabilizes ß-catenin levels in hepatoma cell line Huh7 through inactivation of GSK-3ß, which contributes to the up-regulation of downstream target genes, such as c-Myc, cyclin D1, WISP2 and CTGF. Also, core protein increases cell proliferation rate and promotes Wnt3A-induced tumor growth in the xenograft tumor model of human HCC. CONCLUSIONS/SIGNIFICANCE: HCV core protein enhances Wnt/ß-catenin signaling activity, hence playing an important role in HCV-associated carcinogenesis.


Assuntos
Carcinoma Hepatocelular/patologia , Hepacivirus , Neoplasias Hepáticas/patologia , Transdução de Sinais , Proteínas do Core Viral/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos , Camundongos Nus , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas do Core Viral/genética , Proteínas do Core Viral/farmacologia , Proteína Wnt3A/química , Proteína Wnt3A/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Vaccine ; 28(26): 4301-7, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20430121

RESUMO

BACKGROUND: The hepatitis B virus (HBV) DNA vaccine can generate both HBsAg-specific humoral and cellular immune responses. The immune response can be improved by inclusion of an adjuvant, such as the cytokine GM-CSF which is known to be a very good adjuvant. METHODS: To investigate the ability of GM-CSF to enhance HBV-DNA vaccines, we constructed the plasmids by fusion of GM-CSF gene to the HBV-S gene. Normal and HBV-transgenic mice were then immunized with these plasmids. RESULTS: Our results show that pCDNA3.1-GM-CSF-S induced the most powerful HBsAg-specific humoral and cellular immune response, and that it was able to overcome the non-response to HBsAg in HBV-transgenic mice. In contrast, pCDNA3.1-S-GM-CSF was able to induce only a very poor immune response. CONCLUSIONS: When the HBV-S gene is fused to the GM-CSF gene, the immune effects of the HBV DNA vaccine both in normal and HBV-transgenic mice can be strengthened and HBV-DNA plasmids fused with GM-CSF may be useful for both preventative and therapeutic purposes.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Hepatite B/prevenção & controle , Vacinas de DNA/imunologia , Animais , Citocinas/análise , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Anticorpos Anti-Hepatite/sangue , Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/genética , Vacinas contra Hepatite B/biossíntese , Vacinas contra Hepatite B/genética , Imunidade Celular , Imunidade Humoral , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Plasmídeos/imunologia , Vacinas de DNA/biossíntese , Vacinas de DNA/genética
20.
J Ethnopharmacol ; 129(3): 377-80, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20420890

RESUMO

AIM OF STUDY: Croton oil is the fruit oil of Croton tiglium L., which is well known in folk medicine for the treatment of gastrointestinal (GI) diseases, including constipation, abdominal pain, peptic ulcer, and intestinal inflammation for a long period. This study was to investigate the pharmacological effect of croton oil on GI tract. MATERIALS AND METHODS: The effect of croton oil on the smooth muscle contractions was investigated in vitro using the isolated rabbit jejunum model. RESULTS: Croton oil has a biphasic action contracting and relaxing intestinal tissue. At the concentrations of 20-80 microg/mL, croton oil produced a concentration-dependent increase in the amplitude and tension of muscle contractions, whereas at high concentrations (>200 microg/mL) it decreased the contractile amplitude and had no impact on the tension. Moreover, croton oil was less effective in increasing muscle amplitude and tension than Ach, confirming that the effect of croton oil on muscle contractions is not a simply stimulatory or inhibitory action, but a unique modulatory process depending on the concentration of croton oil. In addition, croton oil concentration-dependently suppressed the frequency of muscle contractions. On the other hand, atropine (10 microM) and 4-DAMP (10 microM) produced a significant inhibition of contractions caused by croton oil, while either hexamethonium (10 microM) or methoctramine (10 microM) was inactive, implying that the regulatory effects of croton oil on GI motility are mediated via the activation of M3 muscarinic receptor. Furthermore, muscle contractions induced by croton oil were dramatically reduced by verapamil (0.1 microM) but not by NE (1 microM), suggesting that the action of croton oil on GI motility is also mediated by Ca(2+) influx through L-type Ca(2+) channel. CONCLUSIONS: The results suggest that croton oil possesses spasmogenic and spasmolytic properties and the regulatory effects of croton oil on GI motility are mediated via the activation of M3 muscarinic receptor and Ca(2+) influx through L-type Ca(2+) channel.


Assuntos
Cálcio/metabolismo , Óleo de Cróton/farmacologia , Fármacos Gastrointestinais/farmacologia , Jejuno/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Receptor Muscarínico M3/metabolismo , Animais , Croton/química , Óleo de Cróton/isolamento & purificação , Relação Dose-Resposta a Droga , Feminino , Frutas/química , Fármacos Gastrointestinais/isolamento & purificação , Técnicas In Vitro , Jejuno/metabolismo , Masculino , Músculo Liso/metabolismo , Coelhos , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA