Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cartilage ; 13(1): 19476035221081466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313741

RESUMO

OBJECTIVE: Tissue-engineered cartilage implants must withstand the potential inflammatory and joint loading environment for successful long-term repair of defects. The work's objectives were to develop a novel, direct cartilage-macrophage co-culture system and to characterize interactions between self-assembled neocartilage and differentially stimulated macrophages. DESIGN: In study 1, it was hypothesized that the proinflammatory response of macrophages would intensify with increasing construct stiffness; it was expected that the neocartilage would display a decrease in mechanical properties after co-culture. In study 2, it was hypothesized that bioactive factors would protect neocartilage properties during macrophage co-culture. Also, it was hypothesized that interleukin 10 (IL-10)-stimulated macrophages would improve neocartilage mechanical properties compared to lipopolysaccharide (LPS)-stimulated macrophages. RESULTS: As hypothesized, stiffer neocartilage elicited a heightened proinflammatory macrophage response, increasing tumor necrosis factor alpha (TNF-α) secretion by 5.47 times when LPS-stimulated compared to construct-only controls. Interestingly, this response did not adversely affect construct properties for the stiffest neocartilage but did correspond to a significant decrease in aggregate modulus for soft and medium stiffness constructs. In addition, bioactive factor-treated constructs were protected from macrophage challenge compared to chondrogenic medium-treated constructs, but IL-10 did not improve neocartilage properties, although stiff constructs appeared to bolster the anti-inflammatory nature of IL-10-stimulated macrophages. However, co-culture of bioactive factor-treated constructs with LPS-treated macrophages reduced TNF-α secretion by over 4 times compared to macrophage-only controls. CONCLUSIONS: In conclusion, neocartilage stiffness can mediate macrophage behavior, but stiffness and bioactive factors prevent macrophage-induced degradation. Ultimately, this co-culture system could be utilized for additional studies to develop the burgeoning field of cartilage mechano-immunology.


Assuntos
Cartilagem Articular , Condrócitos , Cartilagem Articular/fisiologia , Condrócitos/metabolismo , Técnicas de Cocultura , Interleucina-10/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Fator de Necrose Tumoral alfa
2.
Biomater Sci ; 9(23): 7851-7861, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34514479

RESUMO

Evaluating the host immune response to biomaterials is an essential step in the development of medical devices and tissue engineering strategies. To aid in this process, in vitro studies, whereby immune cells such as macrophages are cultured on biomaterials, can often expedite high throughput testing of many materials prior to implantation. While most studies to date utilize murine or human cells, the use of porcine macrophages has been less well described, despite the prevalent use of porcine models in medical device and tissue engineering development. In this study, we describe the isolation and characterization of porcine bone marrow- and peripheral blood-derived macrophages, and their interactions with biomaterials. We confirmed the expression of the macrophage surface markers CD68 and F4/80 and characterized the porcine macrophage response to the inflammatory stimulus, bacterial lipopolysaccharide. Finally, we investigated the inflammatory and fusion response of porcine macrophages cultured on different stiffness hydrogels, and we found that stiffer hydrogels enhanced inflammatory activation by more than two-fold and promoted fusion to form foreign body giant cells. Together, this study establishes the use of porcine macrophages in biomaterial testing and reveals a stiffness-dependent effect on biomaterial-induced giant cell formation.


Assuntos
Materiais Biocompatíveis , Macrófagos , Suínos , Animais , Hidrogéis , Teste de Materiais , Engenharia Tecidual
3.
Biotechnol J ; 14(3): e1700763, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30052320

RESUMO

Lysyl oxidase (LOX)-mediated collagen crosslinking can regulate osteoblastic phenotype and enhance mechanical properties of tissues, both areas of interest in bone tissue engineering. The objective of this study is to investigate the effect of lysyl oxidase-like 2 (LOXL2) on osteogenic differentiation of mesenchymal stem cells (MSCs) cultured in perfusion bioreactors, enzymatic collagen crosslink formation in the extracellular matrix (ECM), and mechanical properties of engineered bone grafts. Exogenous LOXL2 to MSCs seeded in composite scaffolds under perfusion culture for up to 28 days is administered. Constructs treated with LOXL2 appear brown in color and possess greater DNA content and osteogenic potential measured by a twofold increase in bone sialoprotein gene expression. Collagen expression of LOXL2-treated scaffolds is lower than untreated controls. Functional outputs such as calcium deposition, osteocalcin expression, and compressive modulus are unaffected by LOXL2 supplementation. Excitingly, LOXL2-treated constructs contain 1.8- and 1.4-times more pyridinoline (PYD) crosslinks per mole of collagen and per wet weight, respectively, than untreated constructs. Despite these increases, compressive moduli of LOXL2-treated constructs are similar to untreated constructs over the 28-day culture duration. This is the first report of LOXL2 application to engineered, three-dimensional bony constructs. The results suggest a potentially new strategy for engineering osteogenic grafts with a mature ECM by modulating crosslink formation.


Assuntos
Aminoácido Oxirredutases/metabolismo , Colágeno/metabolismo , Osteogênese/fisiologia , Aminoácidos/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais
4.
Annu Rev Biomed Eng ; 20: 145-170, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29494214

RESUMO

The zygapophysial joint, a diarthrodial joint commonly referred to as the facet joint, plays a pivotal role in back pain, a condition that has been a leading cause of global disability since 1990. Along with the intervertebral disc, the facet joint supports spinal motion and aids in spinal stability. Highly susceptible to early development of osteoarthritis, the facet is responsible for a significant amount of pain in the low-back, mid-back, and neck regions. Current noninvasive treatments cannot offer long-term pain relief, while invasive treatments can relieve pain but fail to preserve joint functionality. This review presents an overview of the facet in terms of its anatomy, functional properties, problems, and current management strategies. Furthermore, this review introduces the potential for regeneration of the facet and particular engineering strategies that could be employed as a long-term treatment.


Assuntos
Osteoartrite/fisiopatologia , Regeneração , Coluna Vertebral/fisiopatologia , Articulação Zigapofisária/fisiopatologia , Animais , Dor nas Costas/fisiopatologia , Cartilagem Articular/fisiopatologia , Comorbidade , Humanos , Injeções Intra-Articulares , Joelho/anatomia & histologia , Terminações Nervosas , Ortopedia , Escoliose/complicações , Estenose Espinal/complicações , Coluna Vertebral/fisiologia , Espondilolistese/complicações , Membrana Sinovial/patologia , Articulação Zigapofisária/anatomia & histologia , Articulação Zigapofisária/cirurgia
5.
Biomaterials ; 35(22): 5921-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24767790

RESUMO

The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.


Assuntos
Cartilagem/fisiologia , Condrogênese , Engenharia Tecidual/métodos , Cartilagem/imunologia , Cartilagem/metabolismo , Células Cultivadas , Terapia Genética , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Interleucina-1/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/terapia , Alicerces Teciduais/química , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA