Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502302

RESUMO

In recent years, the development of new bio-based products for biocontrol has been gaining importance as it contributes to reducing the use of synthetic herbicides in agriculture. Conventional herbicides (i.e., the ones with synthetic molecules) can lead to adverse effects such as human diseases (cancers, neurodegenerative diseases, reproductive perturbations, etc.) but also to disturbing the environment because of their drift in the air, transport throughout aquatic systems and persistence across different environments. The use of natural molecules seems to be a very good alternative for maintaining productive agriculture but without the negative side effects of synthetic herbicides. In this context, essential oils and their components are increasingly studied in order to produce several categories of biopesticides thanks to their well-known biocidal activities. However, these molecules can also be potentially hazardous to humans and the environment. This article reviews the state of the literature and regulations with regard to the potential risks related to the use of essential oils as bioherbicides in agricultural and horticultural applications.


Assuntos
Agentes de Controle Biológico/farmacologia , Herbicidas/farmacologia , Óleos Voláteis/farmacologia , Controle Biológico de Vetores/tendências , Doenças das Plantas/prevenção & controle , Humanos , Medição de Risco
2.
J Biol Chem ; 296: 100602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785359

RESUMO

The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.


Assuntos
Membrana Celular/metabolismo , Plantas/metabolismo , Esfingolipídeos/metabolismo , Biofísica , Polissacarídeos/metabolismo , Especificidade da Espécie , Esfingolipídeos/química
3.
Cardiovasc Res ; 117(11): 2395-2406, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33508088

RESUMO

AIMS: In-stent restenosis and late stent thrombosis are complications associated with the use of metallic and drug-coated stents. Strategies that inhibit vascular smooth muscle cell (SMC) proliferation without affecting endothelial cell (EC) growth would be helpful in reducing complications arising from percutaneous interventions. SMC hyperplasia is also a pathologic feature of graft stenosis and fistula failure. Our group previously showed that forced expression of the injury-inducible zinc finger (ZNF) transcription factor, yin yang-1 (YY1), comprising 414 residues inhibits neointima formation in carotid arteries of rabbits and rats. YY1 inhibits SMC proliferation without affecting EC growth in vitro. Identifying a shorter version of YY1 retaining cell-selective inhibition would make it more amenable for potential use as a gene therapeutic agent. METHODS AND RESULTS: We dissected YY1 into a range of shorter fragments (YY1A-D, YY1Δ) and found that the first two ZNFs in YY1 (construct YY1B, spanning 52 residues) repressed SMC proliferation. Receptor binding domain analysis predicts a three-residue (339KLK341) interaction domain. Mutation of 339KLK341 to 339AAA341 in YY1B (called YY1Bm) abrogated YY1B's ability to inhibit SMC but not EC proliferation and migration. Incubation of recombinant GST-YY1B and GST-YY1Bm with SMC lysates followed by precipitation with glutathione-agarose beads and mass spectrometric analysis identified a novel interaction between YY1B and BASP1. Overexpression of BASP1, like YY1, inhibited SMC but not EC proliferation and migration. BASP1 siRNA partially rescued SMC from growth inhibition by YY1B. In the rat carotid balloon injury model, adenoviral overexpression of YY1B, like full-length YY1, reduced neointima formation, whereas YY1Bm had no such effect. CD31+ immunostaining suggested YY1B could increase re-endothelialization in a 339KLK341-dependent manner. CONCLUSION: These studies identify a truncated form of YY1 (YY1B) that can interact with BASP1 and inhibit SMC proliferation, migration, and intimal hyperplasia after balloon injury of rat carotid arteries as effectively as full length YY1. We demonstrate the therapeutic potential of YY1B in vascular proliferative disease.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Lesões das Artérias Carótidas/terapia , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Terapia Genética , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição YY1/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Bovinos , Células Cultivadas , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Hiperplasia , Proteínas de Membrana/genética , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Coelhos , Ratos , Proteínas Repressoras/genética , Transdução de Sinais , Fator de Transcrição YY1/genética
4.
Biomolecules ; 10(2)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023949

RESUMO

The use of chemical herbicides could not only potentially induce negative impacts on the environment, animals, and human health, but also increase the weed resistance to herbicides. In this context, the use of plant extracts could be an interesting and natural alternative to chemical products. It is important to understand the mode of action of their bioactive compounds. This is why we have studied the herbicidal effect of Cynara cardunculus crude extract in terms of inhibition of weeds' seedling growth and its impact on physiological parameters of treated plantlets, like conductivity, dry weight, and fluorescence, and biochemical parameters linked to oxidative stress. We have observed that C. cardunculus crude extract induces oxidative stress in the treated plants and consequently disturbs the physiological and biochemical functions of the plant cells. We have investigated the herbicidal activity of three bioactive compounds, naringenin, myricitrin, and quercetin, from the C. cardunculus crude extract. In both pre- and post-emergence trials, naringenin and myricitrin were significantly more phytotoxic than quercetin. We suggest that their differential initial interaction with the plant's plasma membrane could be one of the main signals for electrolyte leakage and production of high levels of phenoxyl radicals.


Assuntos
Cynara/química , Flavanonas/química , Herbicidas/química , Estresse Oxidativo , Extratos Vegetais/química , Quercetina/química , Trifosfato de Adenosina/química , Agricultura , Membrana Celular/metabolismo , Condutividade Elétrica , Eletrólitos , Flavonoides/química , Peróxido de Hidrogênio/química , Peroxidação de Lipídeos , Malondialdeído/química , Fenóis , Fotossíntese , Plantas Daninhas
5.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426453

RESUMO

Since the 50's, the massive and "environmental naïve" use of synthetic chemistry has revolutionized the farming community facing the dramatic growth of demography. However, nowadays, the controversy grows regarding the long-term harmful effects of these products on human health and the environment. In this context, the use of essential oils (EOs) could be an alternative to chemical products and a better understanding of their mode of biological action for new and optimal applications is of importance. Indeed, if the biocidal effects of some EOs or their components have been at least partly elucidated at the molecular level, very little is currently known regarding their mechanism of action as herbicides at the molecular level. Here, we showed that cinnamon and Java citronella essential oils and some of their main components, i.e.,, cinnamaldehyde (CIN), citronellal (CitA), and citronellol (CitO) could act as efficient herbicides when spread on A. thaliana leaves. The individual EO molecules are small amphiphiles, allowing for them to cross the mesh of cell wall and directly interact with the plant plasma membrane (PPM), which is one of the potential cellular targets of EOs. Hence, we investigated and characterized their interaction with biomimetic PPM while using an integrative biophysical approach. If CitO and CitA, maintaining a similar chemical structure, are able to interact with the model membranes without permeabilizing effect, CIN belonging to the phenylpropanoid family, is not. We suggested that different mechanisms of action for the two types of molecules can occur: while the monoterpenes could disturb the lipid organization and/or domain formation, the phenylpropanoid CIN could interact with membrane receptors.


Assuntos
Arabidopsis/efeitos dos fármacos , Cinnamomum zeylanicum/química , Cymbopogon/química , Herbicidas/química , Óleos Voláteis/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Herbicidas/metabolismo , Óleos Voláteis/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
6.
EMBO Rep ; 20(8): e47182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286648

RESUMO

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha Fluorescente
7.
J Exp Bot ; 70(1): 329-341, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418580

RESUMO

The P1B ATPase heavy metal ATPase 4 (HMA4) is responsible for zinc and cadmium translocation from roots to shoots in Arabidopsis thaliana. It couples ATP hydrolysis to cytosolic domain movements, enabling metal transport across the membrane. The detailed mechanism of metal permeation by HMA4 through the membrane remains elusive. Here, homology modeling of the HMA4 transmembrane region was conducted based on the crystal structure of a ZntA bacterial homolog. The analysis highlighted amino acids forming a metal permeation pathway, whose importance was subsequently investigated functionally through mutagenesis and complementation experiments in plants. Although the zinc pathway displayed overall conservation among the two proteins, significant differences were observed, especially in the entrance area with altered electronegativity and the presence of a ionic interaction/hydrogen bond network. The analysis also newly identified amino acids whose mutation results in total or partial loss of the protein function. In addition, comparison of zinc and cadmium accumulation in shoots of A. thaliana complemented lines revealed a number of HMA4 mutants exhibiting different abilities in zinc and cadmium translocation. These observations could be instrumental to design low cadmium-accumulating crops, hence decreasing human cadmium exposure.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Zinco/metabolismo , Adenosina Trifosfatases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Modelos Genéticos , Homologia Estrutural de Proteína
8.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223492

RESUMO

By manipulating the various physicochemical properties of amino acids, the design of peptides with specific self-assembling properties has been emerging for more than a decade. In this context, short peptides possessing detergent properties (so-called "peptergents") have been developed to self-assemble into well-ordered nanostructures that can stabilize membrane proteins for crystallization. In this study, the peptide with "peptergency" properties, called ADA8 and extensively described by Tao et al., is studied by molecular dynamic simulations for its self-assembling properties in different conditions. In water, it spontaneously forms beta sheets with a ß barrel-like structure. We next simulated the interaction of this peptide with a membrane protein, the bacteriorhodopsin, in the presence or absence of a micelle of dodecylphosphocholine. According to the literature, the peptergent ADA8 is thought to generate a belt of ß structures around the hydrophobic helical domain that could help stabilize purified membrane proteins. Molecular dynamic simulations are here used to image this mechanism and provide further molecular details for the replacement of detergent molecules around the protein. In addition, we generalized this behavior by designing an amphipathic peptide with beta propensity, which was called ABZ12. Both peptides are able to surround the membrane protein and displace surfactant molecules. To our best knowledge, this is the first molecular mechanism proposed for "peptergency".


Assuntos
Detergentes/química , Simulação de Dinâmica Molecular , Peptídeos/química , Aminoácidos/química , Detergentes/farmacologia , Proteínas de Membrana/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Água/química
9.
Elife ; 62017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758890

RESUMO

Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.


Assuntos
Membrana Celular/química , Nicotiana/química , Nicotiana/fisiologia , Proteínas de Plantas/análise , Fenômenos Biofísicos , Microscopia
10.
Langmuir ; 33(38): 9979-9987, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28749675

RESUMO

Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.


Assuntos
Glicolipídeos/química , Biomimética , Membrana Celular , Bicamadas Lipídicas , Lipídeos de Membrana
11.
Plant Physiol ; 170(1): 367-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518342

RESUMO

The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Nicotiana/química , Esfingolipídeos/química , Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glicoesfingolipídeos/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Modelos Moleculares , Fitosteróis/química , Fitosteróis/metabolismo , Folhas de Planta/química , Esfingolipídeos/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
12.
Langmuir ; 30(16): 4556-69, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24690040

RESUMO

Saponins and triterpenic acids have been shown to be able to interact with lipid membranes and domains enriched with cholesterol (rafts). How saponins are able to modulate lipid phase separation in membranes and the role of the sugar chains for this activity is unknown. We demonstrate in a binary membrane model composed of DMPC/Chol (3:1 mol/mol) that the saponin α-hederin and its aglycone presenting no sugar chain, the triterpenic acid hederagenin, are able to induce the formation of lipid domains. We show on multilamellar vesicles (MLV), giant unilamellar vesicles (GUV), and supported planar bilayers (SPB) that the presence of sugar units on the sapogenin accelerates domain formation and increases the proportion of sterols within these domains. The domain shape is also influenced by the presence of sugars because α-hederin and hederagenin induce the formation of tubular and spherical domains, respectively. These highly curved structures should result from the induction of membrane curvature by both compounds. In addition to the formation of domains, α-hederin and hederagenin permeabilize GUV. The formation of membrane holes by α-hederin comes along with the accumulation of lipids into nonbilayer structures in SPB. This process might be responsible for the permeabilizing activity of both compounds. In LUV, permeabilization by α-hederin was sterol-dependent. The biological implications of our results and the mechanisms involved are discussed in relation to the activity of saponins and triterpenic acids on membrane rafts, cancer cells, and hemolysis.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Ácido Oleanólico/análogos & derivados , Saponinas/química , Microdomínios da Membrana , Ácido Oleanólico/química
13.
Nature ; 501(7467): 430-4, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965626

RESUMO

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ß-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.


Assuntos
Apolipoproteínas/sangue , Apolipoproteínas/metabolismo , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Trypanosoma brucei gambiense/fisiologia , África , Animais , Animais Geneticamente Modificados , Apolipoproteína L1 , Apolipoproteínas/antagonistas & inibidores , Apolipoproteínas/toxicidade , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipoproteínas HDL/antagonistas & inibidores , Lipoproteínas HDL/química , Lipoproteínas HDL/toxicidade , Parasitos/patogenicidade , Parasitos/fisiologia , Estrutura Secundária de Proteína , Soro/química , Soro/parasitologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
14.
Biochim Biophys Acta ; 1828(2): 499-509, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23000699

RESUMO

CADY is a cell-penetrating peptide spontaneously making non-covalent complexes with Short interfering RNAs (siRNAs) in water. Neither the structure of CADY nor that of the complexes is resolved. We have calculated and analyzed 3D models of CADY and of the non-covalent CADY-siRNA complexes in order to understand their formation and stabilization. Data from the ab initio calculations and molecular dynamics support that, in agreement with the experimental data, CADY is a polymorphic peptide partly helical. Taking into consideration the polymorphism of CADY, we calculated and compared several complexes with peptide/siRNA ratios of up to 40. Four complexes were run by using molecular dynamics. The initial binding of CADYs is essentially due to the electrostatic interactions of the arginines with siRNA phosphates. Due to a repetitive arginine motif (XLWR(K)) in CADY and to the numerous phosphate moieties in the siRNA, CADYs can adopt multiple positions at the siRNA surface leading to numerous possibilities of complexes. Nevertheless, several complex properties are common: an average of 14±1 CADYs is required to saturate a siRNA as compared to the 12±2 CADYs experimentally described. The 40 CADYs/siRNA that is the optimal ratio for vector stability always corresponds to two layers of CADYs per siRNA. When siRNA is covered by the first layer of CADYs, the peptides still bind despite the electrostatic repulsion. The peptide cage is stabilized by hydrophobic CADY-CADY contacts thanks to CADY polymorphism. The analysis demonstrates that the hydrophobicity, the presence of several positive charges and the disorder of CADY are mandatory to make stable the CADY-siRNA complexes.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos/química , RNA Interferente Pequeno/metabolismo , Motivos de Aminoácidos , Arginina/química , Vetores Genéticos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Fatores de Tempo
15.
J Phys Chem B ; 116(46): 13713-21, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23094791

RESUMO

Fusion peptides of type I fusion glycoproteins are structural elements of several enveloped viruses which enable the fusion between host and virus membranes. It is generally suggested that these peptides can promote the early fusion steps by inducing membrane curvature and that they adopt a tilted helical conformation in membranes. Although this property has been the subject of several experimental and in silico studies, an extensive sampling of the membrane peptide interaction has not yet been done. In this study, we performed coarse-grained molecular dynamic simulations in which the lipid bilayer self-assembles around the peptide. The simulations indicate that the SIV fusion peptide can adopt two different orientations in a DPPC bilayer, a major population which adopts a tilted interfacial orientation and a minor population which is perpendicular to the bilayer. The simulations also indicate that for the SIV mutant that does not induce fusion in vitro the tilt is abolished.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Vírus da Imunodeficiência Símia/química , Proteínas Virais de Fusão/química , Bicamadas Lipídicas/química , Modelos Biológicos
16.
Plant Physiol Biochem ; 58: 245-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22858529

RESUMO

One mechanism used by plants to respond to infection is the production of antimicrobial peptides (AMPs). In addition to a role in defence, AMPs seem to have other biological functions. Furthermore, the number of cysteine-rich AMP-like peptides appears to have been underpredicted in plant genomes. Such peptides could be involved in plant defence and/or in other biological processes. Here we generated an interaction network between 15 AMPs/AMP-like peptides and ca. 8000 other Arabidopsis thaliana proteins (AtORFeome2.0) and found 53 putative novel interactions. These interactions involve five transcription factors, a subunit of the COP9 signalosome, a heat shock protein, a MAP kinase kinase, a thioredoxin and 4 uncharacterized proteins.


Assuntos
Anti-Infecciosos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Resistência à Doença , Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Complexo do Signalossomo COP9 , Cisteína/metabolismo , Genoma de Planta , Proteínas de Choque Térmico/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Subunidades Proteicas , Tiorredoxinas/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
FEBS J ; 276(12): 3235-46, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19438720

RESUMO

Serine protease inhibitors (serpins) are a structurally related but functionally diverse family of ubiquitous proteins. We previously described Ixodes ricinus immunosuppressor (Iris) as a serpin from the saliva of the tick I. ricinus displaying high affinity for human leukocyte elastase. Iris also displays pleotropic effects because it interferes with both the immune response and hemostasis of the host. It thus inhibits lymphocyte proliferation and the secretion of interferon-gamma or tumor necrosis factor-alpha by peripheral blood mononuclear cells, and also platelet adhesion, coagulation and fibrinolysis. Its ability to interfere with coagulation and fibrinolysis, but not platelet adhesion, depends on the integrity of its antiproteolytic reactive center loop domain. Here, we dissect the mechanisms underlying the interaction of recombinant Iris with peripheral blood mononuclear cells. We show that Iris binds to monocytes/macrophages and inhibits their ability to secrete tumor necrosis factor-alpha. Recombinant Iris also has a protective role in endotoxemic shock. The anti-inflammatory ability of Iris does not depend on its antiprotease activity. Moreover, we pinpoint the exosites involved in this activity.


Assuntos
Anti-Inflamatórios/farmacologia , Ixodes/metabolismo , Saliva/metabolismo , Serpinas/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Sítios de Ligação , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Elastase de Leucócito/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Serpinas/genética , Serpinas/imunologia , Choque Séptico/imunologia , Choque Séptico/prevenção & controle , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
19.
J Pept Sci ; 14(4): 423-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17994611

RESUMO

We had previously predicted successfully the minimal fusion peptides (FPs) of the human immunodeficiency virus 1 (HIV-1) gp41 and the bovine leukemia virus (BLV) gp30 using an original approach based on the obliquity/fusogenicity relationship of tilted peptides. In this paper, we have used the same method to predict the shortest FP capable of inducing optimal fusion in vitro of the simian immunodeficiency virus (SIV) mac isolate and of other SIVs and human immunodeficiency virus (HIV-2) isolates. In each case, the 11-residue-long peptide was predicted as the minimal FP. For the SIV mac isolate, liposome lipid-mixing and leakage assays confirmed that this peptide is the shortest peptide inducing optimal fusion in vitro, being therefore the minimal FP. These results are another piece of evidence that the tilted properties of FPs are important for the fusion process and that our method can be used to predict the minimal FPs of other viruses.


Assuntos
Produtos do Gene env/química , Peptídeos/química , Proteínas Oncogênicas de Retroviridae/química , Proteínas Virais de Fusão/química , Sequência de Aminoácidos , Animais , Simulação por Computador , Produtos do Gene env/genética , HIV-1/isolamento & purificação , HIV-2/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Fusão de Membrana , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Fosfatidilcolinas/química , Fosfatidilserinas/química , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Oncogênicas de Retroviridae/genética , Dodecilsulfato de Sódio/química , Proteínas Virais de Fusão/genética
20.
Proteins ; 68(4): 936-47, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17554782

RESUMO

Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid fibrils. Other amyloidogenic proteins, such as the beta amyloid peptide involved in Alzheimer's disease and the prion protein (PrP) associated with Creuztfeldt-Jakob's disease, are known to possess "tilted peptides". These peptides are short protein fragments that adopt an oblique orientation at a hydrophobic/hydrophilic interface, which enables destabilization of the membranes. In this paper, sequence analysis and molecular modelling predict that the 67-78 fragment of alpha-synuclein is a tilted peptide. Its destabilizing properties were tested experimentally. The alpha-synuclein 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. The neuronal toxicity, studied using human neuroblastoma cells, demonstrated that the alpha-synuclein 67-78 peptide induces neurotoxicity. A mutant designed by molecular modelling to be amphipathic was shown to be significantly less fusogenic and toxic than the wild type. In conclusion, we have identified a tilted peptide in alpha-synuclein, which could be involved in the toxicity induced during amyloidogenesis of alpha-synuclein.


Assuntos
Fragmentos de Peptídeos/toxicidade , alfa-Sinucleína/química , Dicroísmo Circular , Humanos , Corpos de Lewy/patologia , Modelos Moleculares , Neurotoxinas/toxicidade , Doença de Parkinson/patologia , Fosfolipídeos , Conformação Proteica , Estresse Mecânico , alfa-Sinucleína/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA