Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 538(7625): 329-335, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27626386

RESUMO

Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Peptídeos/química , Peptídeos/síntese química , Estabilidade Proteica , Motivos de Aminoácidos , Cristalografia por Raios X , Ciclização , Dissulfetos/química , Temperatura Alta , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estereoisomerismo
2.
Bioorg Med Chem ; 20(18): 5550-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22921743

RESUMO

Potent and selective inhibitors of the enzyme dimethylarginine dimethylaminohydrolase (DDAH) are useful as molecular probes to better understand cellular regulation of nitric oxide. Inhibitors are also potential therapeutic agents for treatment of pathological states associated with the inappropriate overproduction of nitric oxide, such as septic shock, selected types of cancer, and other conditions. Inhibitors with structures dissimilar to substrate may overcome limitations inherent to substrate analogs. Therefore, to identify structurally-diverse inhibitor scaffolds, high-throughput screening (HTS) of a 4000-member library of fragment-sized molecules was completed using the Pseudomonas aeruginosa DDAH and human DDAH-1 isoforms. Use of a substrate concentration equal to its K(M) value during the primary screen allowed for the detection of inhibitors with different modes of inhibition. A series of validation tests were designed and implemented in the identification of four inhibitors of human DDAH-1 that were unknown prior to the screen. Two inhibitors share a 4-halopyridine scaffold and act as quiescent affinity labels that selectively and covalently modify the active-site Cys residue. Two inhibitors are benzimidazole-like compounds that reversibly and competitively inhibit human DDAH-1 with Ligand Efficiency values ≥0.3 kcal/mol/heavy (non-hydrogen) atom, indicating their suitability for further development. Both inhibitor scaffolds have available sites to derivatize for further optimization. Therefore, use of this fragment-based HTS approach is demonstrated to successfully identify two novel scaffolds for development of DDAH-1 inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Isoenzimas/antagonistas & inibidores , Modelos Moleculares , Pseudomonas aeruginosa/enzimologia , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA