RESUMO
Tumour-derived extracellular vesicles (EVs) participate in tumour progression by deregulating various physiological processes including angiogenesis and inflammation. Here we report that EVs released by endothelial cells in a mammary tumour environment participate in the recruitment of macrophages within the tumour, leading to an immunomodulatory phenotype permissive for tumour growth. Using RNA-Seq approaches, we identified several microRNAs (miRNAs) found in endothelial EVs sharing common targets involved in the regulation of the immune system. To further study the impact of these miRNAs in a mouse tumour model, we focused on three miRNAs that are conserved between humans and mouse, that is, miR-142-5p, miR-183-5p and miR-222-3p. These miRNAs are released from endothelial cells in a tumour microenvironment and are transferred via EVs to macrophages. In mouse mammary tumour models, treatment with EVs enriched in these miRNAs leads to a polarization of macrophages toward an M2-like phenotype, which in turn promotes tumour growth.
Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Animais , Modelos Animais de Doenças , Células Endoteliais , Vesículas Extracelulares/genética , Camundongos , MicroRNAs/genética , Microambiente Tumoral , Macrófagos Associados a TumorRESUMO
In endothelial cells, binding of vascular endothelial growth factor (VEGF) to the receptor VEGFR2 activates multiple signaling pathways that trigger processes such as proliferation, survival, and migration that are necessary for angiogenesis. VEGF-bound VEGFR2 becomes internalized, which is a key step in the proangiogenic signal. We showed that the urokinase plasminogen activator receptor (uPAR) interacted with VEGFR2 and described the mechanism by which this interaction mediated VEGF signaling and promoted angiogenesis. Knockdown of uPAR in human umbilical vein endothelial cells (HUVECs) impaired VEGFR2 signaling, and uPAR deficiency in mice prevented VEGF-induced angiogenesis. Upon exposure of HUVECs to VEGF, uPAR recruited the low-density lipoprotein receptor-related protein 1 (LRP-1) to VEGFR2, which induced VEGFR2 internalization. Thus, the uPAR-VEGFR2 interaction is crucial for VEGF signaling in endothelial cells.
Assuntos
Neovascularização Fisiológica/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Endocitose , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina beta1/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Ligação Proteica , Transdução de SinaisRESUMO
The interaction between tumor cells and their microenvironment is an essential aspect of tumor development. Therefore, understanding how this microenvironment communicates with tumor cells is crucial for the development of new anti-cancer therapies. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression. They are secreted into the extracellular medium in vesicles called exosomes, which allow communication between cells via the transfer of their cargo. Consequently, we hypothesized that circulating endothelial miRNAs could be transferred to tumor cells and modify their phenotype. Using exogenous miRNA, we demonstrated that endothelial cells can transfer miRNA to tumor cells via exosomes. Using miRNA profiling, we identified miR-503, which exhibited downregulated levels in exosomes released from endothelial cells cultured under tumoral conditions. The modulation of miR-503 in breast cancer cells altered their proliferative and invasive capacities. We then identified two targets of miR-503, CCND2 and CCND3. Moreover, we measured increased plasmatic miR-503 in breast cancer patients after neoadjuvant chemotherapy, which could be partly due to increased miRNA secretion by endothelial cells. Taken together, our data are the first to reveal the involvement of the endothelium in the modulation of tumor development via the secretion of circulating miR-503 in response to chemotherapy treatment.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , Terapia NeoadjuvanteRESUMO
The N-terminal fragment of prolactin (16K PRL) inhibits tumor growth by impairing angiogenesis, but the underlying mechanisms are unknown. Here, we found that 16K PRL binds the fibrinolytic inhibitor plasminogen activator inhibitor-1 (PAI-1), which is known to contextually promote tumor angiogenesis and growth. Loss of PAI-1 abrogated the antitumoral and antiangiogenic effects of 16K PRL. PAI-1 bound the ternary complex PAI-1-urokinase-type plasminogen activator (uPA)-uPA receptor (uPAR), thereby exerting antiangiogenic effects. By inhibiting the antifibrinolytic activity of PAI-1, 16K PRL also protected mice against thromboembolism and promoted arterial clot lysis. Thus, by signaling through the PAI-1-uPA-uPAR complex, 16K PRL impairs tumor vascularization and growth and, by inhibiting the antifibrinolytic activity of PAI-1, promotes thrombolysis.
Assuntos
Fibrinólise , Neovascularização Patológica , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Prolactina/fisiologia , Animais , Divisão Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/fisiologia , Prolactina/químicaRESUMO
BACKGROUND: Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling. CONCLUSIONS/SIGNIFICANCE: Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy.
Assuntos
Inibidores da Angiogênese/farmacologia , Vasos Sanguíneos/crescimento & desenvolvimento , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Prolactina/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Técnicas de Cocultura , Células Endoteliais , Camundongos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Pericitos , Prolactina/uso terapêutico , Transdução de Sinais/efeitos dos fármacosRESUMO
The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor models in which it prevented tumor-induced angiogenesis and delayed tumor growth. In addition to angiogenesis, tumors also stimulate the formation of lymphatic vessels, which contribute to tumor cell dissemination and metastasis. However, the role of 16K hPRL in tumor-induced lymphangiogenesis has never been investigated. We establish in vitro that 16K hPRL induces apoptosis and inhibits proliferation, migration, and tube formation of human dermal lymphatic microvascular endothelial cells. In addition, in a B16F10 melanoma mouse model, we found a decreased number of lymphatic vessels in the primary tumor and in the sentinel lymph nodes after 16K hPRL treatment. This decrease is accompanied by a significant diminished expression of lymphangiogenic markers in primary tumors and sentinel lymph nodes as determined by quantitative RT-PCR. These results suggest, for the first time, that 16K hPRL is a lymphangiostatic as well as an angiostatic agent with antitumor properties.
Assuntos
Proteínas Angiostáticas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Prolactina/farmacologia , Proteínas Angiostáticas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/patologia , Feminino , Humanos , Linfonodos/patologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/patologia , Camundongos , Neovascularização Patológica/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Prolactina/uso terapêuticoRESUMO
Angiogenesis is a crucial step in many pathologies, including tumor growth and metastasis. Here, we show that tilted peptides exert antiangiogenic activity. Tilted (or oblique-oriented) peptides are short peptides known to destabilize membranes and lipid cores and characterized by an asymmetric distribution of hydrophobic residues along the axis when helical. We have previously shown that 16-kDa fragments of the human prolactin/growth hormone (PRL/GH) family members are potent angiogenesis inhibitors. Here, we demonstrate that all these fragments possess a 14-aa sequence having the characteristics of a tilted peptide. The tilted peptides of human prolactin and human growth hormone induce endothelial cell apoptosis, inhibit endothelial cell proliferation, and inhibit capillary formation both in vitro and in vivo. These antiangiogenic effects are abolished when the peptides' hydrophobicity gradient is altered by mutation. We further demonstrate that the well known tilted peptides of simian immunodeficiency virus gp32 and Alzheimer's beta-amyloid peptide are also angiogenesis inhibitors. Taken together, these results point to a potential new role for tilted peptides in regulating angiogenesis.