Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 17(845): eadg4124, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012937

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K+ channel Kv1.3 in B cells enhanced KSHV lytic replication. The KSHV replication and transcription activator (RTA) protein increased the abundance of Kv1.3 and led to enhanced K+ channel activity and hyperpolarization of the B cell membrane. Enhanced Kv1.3 activity promoted intracellular Ca2+ influx, leading to the Ca2+-driven nuclear localization of KSHV RTA and host nuclear factor of activated T cells (NFAT) proteins and subsequently increased the expression of NFAT1 target genes. KSHV lytic replication and infectious virion production were inhibited by Kv1.3 blockers or silencing. These findings highlight Kv1.3 as a druggable host factor that is key to the successful completion of KSHV lytic replication.


Assuntos
Herpesvirus Humano 8 , Canal de Potássio Kv1.3 , Fatores de Transcrição NFATC , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Transativadores/metabolismo , Transativadores/genética , Linfócitos B/virologia , Linfócitos B/metabolismo , Cálcio/metabolismo , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/genética
2.
Thorax ; 76(1): 64-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33109690

RESUMO

INTRODUCTION: Human respiratory syncytial virus (HRSV) is a common cause of respiratory tract infections (RTIs) globally and is one of the most fatal infectious diseases for infants in developing countries. Of those infected, 25%-40% aged ≤1 year develop severe lower RTIs leading to pneumonia and bronchiolitis, with ~10% requiring hospitalisation. Evidence also suggests that HRSV infection early in life is a major cause of adult asthma. There is no HRSV vaccine, and the only clinically approved treatment is immunoprophylaxis that is expensive and only moderately effective. New anti-HRSV therapeutic strategies are therefore urgently required. METHODS: It is now established that viruses require cellular ion channel functionality to infect cells. Here, we infected human lung epithelial cell lines and ex vivo human lung slices with HRSV in the presence of a defined panel of chloride (Cl-) channel modulators to investigate their role during the HRSV life-cycle. RESULTS: We demonstrate the requirement for TMEM16A, a calcium-activated Cl- channel, for HRSV infection. Time-of-addition assays revealed that the TMEM16A blockers inhibit HRSV at a postentry stage of the virus life-cycle, showing activity as a postexposure prophylaxis. Another important negative-sense RNA respiratory pathogen influenza virus was also inhibited by the TMEM16A-specific inhibitor T16Ainh-A01. DISCUSSION: These findings reveal TMEM16A as an exciting target for future host-directed antiviral therapeutics.


Assuntos
Anoctamina-1/farmacologia , Anticorpos Antivirais/imunologia , Proteínas de Neoplasias/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/imunologia , Células Cultivadas , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia
3.
Nat Commun ; 10(1): 4619, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601809

RESUMO

Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Cisteína/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Canais Iônicos/genética , Bicamadas Lipídicas/química , Lipídeos/química , Mutação , Conformação Proteica , Domínios Proteicos
4.
Biochem Pharmacol ; 152: 11-20, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29548810

RESUMO

Only limited data are available on the inhibition of the sugar transporter GLUT5 by flavonoids or other classes of bioactives. Intestinal GLUT7 is poorly characterised and no information exists concerning its inhibition. We aimed to study the expression of GLUT7 in Caco-2/TC7 intestinal cells, and evaluate inhibition of glucose transport by GLUT2 and GLUT7, and of fructose transport by GLUT2, GLUT5 and GLUT7, by flavonoids. Differentiated Caco-2/TC7 cell monolayers were used to investigate GLUT7 expression, as well as biotinylation and immunofluorescence to assess GLUT7 location. For mechanistic sugar transport studies, X. laevis oocytes were injected with individual mRNA, and GLUT protein expression on oocyte membranes was confirmed. Oocytes were incubated with D-[14C(U)]-glucose or D-[14C(U)]-fructose in the presence of flavonoids, and uptake was estimated by liquid scintilation counting. In differentiated Caco-2/TC7 cell monolayers, GLUT7 was mostly expressed apically. When applied apically, or to both compartments, sorbitol, galactose, L-glucose or sucrose did not affect GLUT7 mRNA expression. Fructose applied to both sides increased GLUT7 mRNA (13%, p ≤ 0.001) and total GLUT7 protein (2.7-fold, p ≤ 0.05), while the ratio between apical, basolateral and total GLUT7 protein was unchanged. In the X. laevis oocyte model, GLUT2-mediated glucose and fructose transport were inhibited by quercetin, (-)-epigallocatechin gallate (EGCG) and apigenin, GLUT5-mediated fructose transport was inhibited by apigenin and EGCG, but not by quercetin, and GLUT7-mediated uptake of both glucose and fructose was inhibited by apigenin, but not by quercetin nor EGCG. Expression of GLUT7 was increased by fructose, but only when applied to Caco-2/TC7 cells both apically and basolaterally. Since GLUT2, GLUT5 and GLUT7 show different patterns of inhibition by the tested flavonoids, we suggest that they have the potential to be used as investigational tools to distinguish sugar transporter activity in different biological settings.


Assuntos
Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Animais , Células CACO-2 , Frutose/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transportador de Glucose Tipo 5/genética , Humanos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus laevis
5.
J Biol Chem ; 293(12): 4582-4590, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29462791

RESUMO

Ion channels regulate many aspects of cell physiology, including cell proliferation, motility, and migration, and aberrant expression and activity of ion channels is associated with various stages of tumor development, with K+ and Cl- channels now being considered the most active during tumorigenesis. Accordingly, emerging in vitro and preclinical studies have revealed that pharmacological manipulation of ion channel activity offers protection against several cancers. Merkel cell polyomavirus (MCPyV) is a major cause of Merkel cell carcinoma (MCC), primarily because of the expression of two early regulatory proteins termed small and large tumor antigens (ST and LT, respectively). Several molecular mechanisms have been attributed to MCPyV-mediated cancer formation but, thus far, no studies have investigated any potential link to cellular ion channels. Here we demonstrate that Cl- channel modulation can reduce MCPyV ST-induced cell motility and invasiveness. Proteomic analysis revealed that MCPyV ST up-regulates two Cl- channels, CLIC1 and CLIC4, which when silenced, inhibit MCPyV ST-induced motility and invasiveness, implicating their function as critical to MCPyV-induced metastatic processes. Consistent with these data, we confirmed that CLIC1 and CLIC4 are up-regulated in primary MCPyV-positive MCC patient samples. We therefore, for the first time, implicate cellular ion channels as a key host cell factor contributing to virus-mediated cellular transformation. Given the intense interest in ion channel modulating drugs for human disease. This highlights CLIC1 and CLIC4 activity as potential targets for MCPyV-induced MCC.


Assuntos
Carcinoma de Célula de Merkel/patologia , Movimento Celular , Canais de Cloreto/metabolismo , Poliomavírus das Células de Merkel/fisiologia , Infecções por Polyomavirus/complicações , Neoplasias Cutâneas/secundário , Infecções Tumorais por Vírus/complicações , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/epidemiologia , Carcinoma de Célula de Merkel/virologia , Proliferação de Células , Canais de Cloreto/genética , Cloretos/metabolismo , Células HEK293 , Humanos , Incidência , Invasividade Neoplásica , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Proteoma/análise , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
6.
Elife ; 62017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654419

RESUMO

Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.


Assuntos
Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Biologia Molecular/métodos , Coloração e Rotulagem/métodos , Animais , Camundongos
7.
Proc Natl Acad Sci U S A ; 110(17): 7014-9, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23572577

RESUMO

Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled.


Assuntos
Doença de Dent/fisiopatologia , Endocitose/fisiologia , Endossomos/química , Células Epiteliais/fisiologia , Túbulos Renais Proximais/citologia , Linhagem Celular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Doença de Dent/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Mutação/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
8.
Biochem Pharmacol ; 84(4): 564-70, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22634047

RESUMO

Flavonoids modulate cell signaling and inhibit oxidative enzymes. After oral consumption, they circulate in human plasma as amphiphilic glucuronide or sulfate conjugates, but it is unknown how these physiological metabolites permeate into cells. We examined the mechanisms of uptake of these conjugates into hepatocellular carcinoma (HepG2) cells, and found that uptake of quercetin-3'-O-sulfate was saturable and temperature-dependent, indicating the involvement of carrier-mediated transport. Quercetin-3-O-glucuronide was taken up predominantly via passive diffusion in these cells. Quantitative real-time PCR analysis showed high expression of OATP4C1, followed by OAT2, OAT4 and low expression of OATP1B1 in HepG2 cells, and addition of inhibitors of OATs and OATPs resulted in a significant reduction in quercetin-3'-O-sulfate uptake. The accumulation of quercetin-3'-O-sulfate was further evaluated in HEK293 cells expressing OAT2, OAT4 and OATP4C1. Uptake of quercetin-3'-O-sulfate was 2.3- and 1.4-fold higher in cells expressing OAT4 and OATP4C1 at pH 6.0, respectively, than in control HEK293 cells. siRNA knockdown of OATP4C1 expression in HepG2 cells reduced uptake of quercetin-3'-O-sulfate by ∼40%. This study highlights a role for OATs and OATPs in the cellular uptake of biologically active flavonoid conjugates.


Assuntos
Glucuronídeos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Peptídeos/metabolismo , Quercetina/análogos & derivados , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Digoxina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Microscopia de Fluorescência , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transporte Proteico , Quercetina/metabolismo , RNA Interferente Pequeno/genética
9.
J Biol Chem ; 285(8): 5963-73, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20026601

RESUMO

Pancreatic ATP-sensitive potassium (K(ATP)) channels control insulin secretion by coupling the excitability of the pancreatic beta-cell to glucose metabolism. Little is currently known about how the plasma membrane density of these channels is regulated. We therefore set out to examine in detail the endocytosis and recycling of these channels and how these processes are regulated. To achieve this goal, we expressed K(ATP) channels bearing an extracellular hemagglutinin epitope in human embryonic kidney cells and followed their fate along the endocytic pathway. Our results show that K(ATP) channels undergo multiple rounds of endocytosis and recycling. Further, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate significantly decreases K(ATP) channel surface density by reducing channel recycling and diverting the channel to lysosomal degradation. These findings were recapitulated in the model pancreatic beta-cell line INS1e, where activation of PKC leads to a decrease in the surface density of native K(ATP) channels. Because sorting of internalized channels between lysosomal and recycling pathways could have opposite effects on the excitability of pancreatic beta-cells, we propose that PKC-regulated K(ATP) channel trafficking may play a role in the regulation of insulin secretion.


Assuntos
Endocitose/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Lisossomos/metabolismo , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Carcinógenos/farmacologia , Linhagem Celular , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Insulina/genética , Secreção de Insulina , Lisossomos/genética , Modelos Biológicos , Canais de Potássio/genética , Proteína Quinase C/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Acetato de Tetradecanoilforbol/farmacologia
10.
Methods Mol Biol ; 491: 177-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18998093

RESUMO

A number of recent studies have described the activation of BK(Ca) channels by steroid hormones such as estrogen. The proposed mechanisms are diverse and include both the direct interaction with the ion channel subunits and the stimulation via receptor activation and cell signalling pathways. To investigate the activation of BK(Ca) channels by estrogen we devised a cell-free system by incorporating recombinant channels of known subunit composition into artificial bilayers and recorded single channel currents. This chapter describes the methods used to prepare purified membrane fractions from cultured cells and the construction of artificial phospholipids bilayers for the incorporation and recording of ion channels.


Assuntos
Estrogênios/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Bicamadas Lipídicas , Linhagem Celular , Eletrofisiologia/métodos , Humanos , Rim/embriologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Bicamadas Lipídicas/síntese química , Fosfatidiletanolaminas , Fosfatidilserinas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Mol Membr Biol ; 23(5): 420-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17060159

RESUMO

BK channels regulate vascular tone by hyperpolarizing smooth muscle in response to fluctuating calcium concentrations. Oestrogen has been reported to lower blood pressure by increasing BK channel open probability through direct binding to the regulatory beta1-subunit(s) associated with the channel. The present investigation demonstrates that 17beta-oestradiol activates the BK channel complex by increasing the burst duration of channel openings. A subconductance state was observed in 25% of recordings following the addition of 17beta-oestradiol and could reflect uncoupling between the pore forming alpha1-subunit and the regulatory beta1-subunit. We also present evidence that more than one beta1-subunit is required to facilitate binding of 17beta-oestradiol to the channel complex.


Assuntos
Eletrofisiologia/métodos , Estrogênios/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cálcio/farmacologia , Células Cultivadas , Estradiol/farmacologia , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Bicamadas Lipídicas
12.
Diabetes ; 55(6): 1705-12, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731833

RESUMO

Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K(+) channel (K(ATP) channel), are a common cause of neonatal diabetes. We identified a novel KCNJ11 mutation, R50Q, that causes permanent neonatal diabetes (PNDM) without neurological problems. We investigated the functional effects this mutation and another at the same residue (R50P) that led to PNDM in association with developmental delay. Wild-type or mutant Kir6.2/SUR1 channels were examined by heterologous expression in Xenopus oocytes. Both mutations increased resting whole-cell currents through homomeric and heterozygous K(ATP) channels by reducing channel inhibition by ATP, an effect that was larger in the presence of Mg(2+). However the magnitude of the reduction in ATP sensitivity (and the increase in the whole-cell current) was substantially larger for the R50P mutation. This is consistent with the more severe phenotype. Single-R50P channel kinetics (in the absence of ATP) did not differ from wild type, indicating that the mutation primarily affects ATP binding and/or transduction. This supports the idea that R50 lies in the ATP-binding site of Kir6.2. The sulfonylurea tolbutamide blocked heterozygous R50Q (89%) and R50P (84%) channels only slightly less than wild-type channels (98%), suggesting that sulfonylurea therapy may be of benefit for patients with either mutation.


Assuntos
Arginina/genética , Diabetes Mellitus/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Eletrofisiologia , Feminino , Heterozigoto , Humanos , Recém-Nascido , Cinética , Magnésio/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Estrutura Secundária de Proteína , Ratos , Compostos de Sulfonilureia/farmacologia , Xenopus laevis
13.
Diabetes ; 53 Suppl 3: S123-7, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561899

RESUMO

The ATP-sensitive K+ channel (KATP channel) couples glucose metabolism to insulin secretion in pancreatic beta-cells. It is comprised of sulfonylurea receptor (SUR)-1 and Kir6.2 proteins. Binding of Mg nucleotides to the nucleotide-binding domains (NBDs) of SUR1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. To elucidate the structural basis of this regulation, we constructed a molecular model of the NBDs of SUR1, based on the crystal structures of mammalian proteins that belong to the same family of ATP-binding cassette transporter proteins. This model is a dimer in which there are two nucleotide-binding sites, each of which contains residues from NBD1 as well as from NBD2. It makes the novel prediction that residue D860 in NBD1 helps coordinate Mg nucleotides at site 2. We tested this prediction experimentally and found that, unlike wild-type channels, channels containing the SUR1-D860A mutation were not activated by MgADP in either the presence or absence of MgATP. Our model should be useful for designing experiments aimed at elucidating the relationship between the structure and function of the KATP channel.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio/química , Receptores de Droga/química , Animais , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/química , Dimerização , Humanos , Potenciais da Membrana , Modelos Moleculares , Nucleotídeos/metabolismo , Oócitos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Conformação Proteica , Receptores de Sulfonilureias , Transfecção , Xenopus
14.
Proc Natl Acad Sci U S A ; 101(1): 76-81, 2004 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-14681552

RESUMO

ATP-sensitive K(+) (K(ATP)) channels play important roles in the regulation of membrane excitability in many cell types. ATP inhibits channel activity by binding to a specific site formed by the N and C termini of the pore-forming subunit, Kir6.2, but the structural changes associated with this interaction remain unclear. Here, we use fluorescence resonance energy transfer (FRET) to study the ATP-dependent interaction between the N and C termini of Kir6.2 using a construct bearing fused cyan and yellow fluorescent proteins (ECFP-Kir6.2-EYFP). When expressed in human embryonic kidney cells, ECFP-Kir6.2-EYFP/SUR1 channels displayed FRET that was augmented by agonist stimulation and diminished by metabolic poisoning. Addition of ATP to permeabilized cells or isolated plasma membrane sheets increased FRET. FRET changes were abolished by Kir6.2 mutations that altered ATP-dependent channel closure and channel gating. In the wild-type channel, the ATP concentrations, which increased FRET (EC(50) = 1.36 mM), were significantly higher than those causing channel inhibition (IC(50) = 0.29 mM). Demonstrating the existence of intermolecular interactions, a dimeric construct comprising two molecules of Kir6.2 linked head-to-tail (ECFP-Kir6.2-Kir6.2-EYFP) displayed less FRET than the monomer in the absence of nucleotide but still exhibited ATP-dependent FRET increases (EC(50) = 1.52 mM) and channel inhibition. We conclude that binding of ATP to Kir6.2, (i). alters the interaction between the N- and C-terminal domains, (ii). probably involves both intrasubunit and intersubunit interactions, (iii). reflects ligand binding not channel gating, and (iv). occurs in intact cells when subplasmalemmal [ATP] changes in the millimolar range.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Técnicas In Vitro , Líquido Intracelular/metabolismo , Cinética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA