Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38561051

RESUMO

PURPOSE: We present the final analyses of tumor dynamics and their prognostic significance during a 6-week course of concurrent chemoradiotherapy for glioblastoma in the Glioblastoma Longitudinal Imaging Observational study. METHODS AND MATERIALS: This is a prospective serial magnetic resonance imaging study in 129 patients with glioblastoma who had magnetic resonance imaging obtained at radiation therapy (RT) planning (F0), fraction 10 (F10), fraction 20 (F20), and 1-month post-RT. Tumor dynamics assessed included gross tumor volume relative to F0 (Vrel) and tumor migration distance (dmigration). Covariables evaluated included: corpus callosum involvement, extent of surgery, O6-methylguanine-DNA-methyltransferase methylation, and isocitrate dehydrogenase mutation status. RESULTS: The median Vrel were 0.85 (range, 0.25-2.29) at F10, 0.79 (range, 0.09-2.22) at F20, and 0.78 (range, 0.13-4.27) at 1 month after completion of RT. The median dmigration were 4.7 mm (range, 1.1-20.4 mm) at F10, 4.7 mm (range, 0.8-20.7 mm) at F20, and 6.1 mm (range, 0.0-45.5 mm) at 1 month after completion of RT. Compared with patients who had corpus callosum involvement (n = 26), those without corpus callosum involvement (n = 103) had significant Vrel reduction at F20 (P = .03) and smaller dmigration at F20 (P = .007). Compared with patients who had biopsy alone (n = 19) and subtotal resection (n = 71), those who had gross total resection (n = 38) had significant Vrel reduction at F10 (P = .001) and F20 (P = .001) and a smaller dmigration at F10 (P = .03) and F20 (P = .002). O6-Methylguanine-DNA-methyltransferase methylation and isocitrate dehydrogenase mutation status were not significantly associated with tumor dynamics. The median progression-free survival and overall survival (OS) were 8.5 months (95% CI, 6.9-9.9) and 20.4 months (95% CI, 17.6-25.2). In multivariable analyses, patients with Vrel ≥ 1.33 at F10 had worse OS (hazard ratio [HR], 4.6; 95% CI, 1.8-11.4; P = .001), and patients with dmigration ≥ 5 mm at 1-month post-RT had worse progression-free survival (HR, 1.76; 95% CI, 1.08-2.87) and OS (HR, 2.2; 95% CI, 1.2-4.0; P = .007). CONCLUSIONS: Corpus callosum involvement and extent of surgery are independent predictors of tumor dynamics during RT and can enable patient selection for adaptive RT strategies. Significant tumor enlargement at F10 and tumor migration 1-month post-RT were associated with poorer OS.

2.
Int J Radiat Oncol Biol Phys ; 118(3): 662-671, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793575

RESUMO

PURPOSE: The optimal modern radiation therapy (RT) approach after surgery for atypical and malignant meningioma is unclear. We present results of dose escalation in a single-institution cohort spanning 2000 to 2021. METHODS AND MATERIALS: Consecutive patients with histopathologic grade 2 or 3 meningioma treated with RT were reviewed. A dose-escalation cohort (≥66 Gy equivalent dose in 2-Gy fractions using an α/ß = 10) was compared with a standard-dose cohort (<66 Gy). Outcomes were progression-free survival (PFS), cause-specific survival, overall survival (OS), local failure (LF), and radiation necrosis. RESULTS: One hundred eighteen patients (111 grade 2, 94.1%) were identified; 54 (45.8%) received dose escalation and 64 (54.2%) standard dose. Median follow-up was 45.4 months (IQR, 24.0-80.0 months) and median OS was 9.7 years (Q1: 4.6 years, Q3: not reached). All dose-escalated patients had residual disease versus 65.6% in the standard-dose cohort (P < .001). PFS at 3, 4, and 5 years in the dose-escalated versus standard-dose cohort was 78.9%, 72.2%, and 64.6% versus 57.2%, 49.1%, and 40.8%, respectively, (P = .030). On multivariable analysis, dose escalation (hazard ratio [HR], 0.544; P = .042) was associated with improved PFS, whereas ≥2 surgeries (HR, 1.989; P = .035) and older age (HR, 1.035; P < .001) were associated with worse PFS. The cumulative risk of LF was reduced with dose escalation (P = .016). Multivariable analysis confirmed that dose escalation was protective for LF (HR, 0.483; P = .019), whereas ≥2 surgeries before RT predicted for LF (HR, 2.145; P = .008). A trend was observed for improved cause-specific survival and OS in the dose-escalation cohort (P < .1). Seven patients (5.9%) developed symptomatic radiation necrosis with no significant difference between the 2 cohorts. CONCLUSIONS: Dose-escalated RT with ≥66 Gy for high-grade meningioma is associated with improved local control and PFS with an acceptable risk of radiation necrosis.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/radioterapia , Meningioma/cirurgia , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirurgia , Necrose
3.
J Neurooncol ; 164(3): 597-605, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37707752

RESUMO

PURPOSE: To investigate the changes in apparent diffusion coefficient (ADC) within incrementally-increased margins beyond the gross tumor volume (GTV) on post-operative radiation planning MRI and their prognostic utility in glioblastoma. METHODS: Radiation planning MRIs of adult patients with newly diagnosed glioblastoma from 2017 to 2020 were assessed. The ADC values were normalized to contralateral normal white matter (nADC). Using 1 mm isotropic incremental margin increases from the GTV, the nADC values were calculated at each increment. Age, ECOG performance status, extent of resection and MGMT promoter methylation status were obtained from medical records. Using univariate and multivariable Cox regression analysis, association of nADC to progression-free and overall survival (PFS, OS) was assessed at each increment. RESULTS: Seventy consecutive patients with mean age of 53.6 ± 10.3 years, were evaluated. The MGMT promoter was methylated in 31 (44.3%), unmethylated in 36 (51.6%) and unknown in 3 (4.3%) patients. 11 (16%) underwent biopsy, 41 (44%) subtotal resection and 18 (26%) gross total resection. For each 1 mm increase in distance from GTV, the nADC decreased by 0.16% (p < 0.0001). At 1-5 mm increment, the nADC was associated with OS (p < 0.01). From 6 to 11 mm increment the nADC was associated with OS with the p-value gradually increasing from 0.018 to 0.046. nADC was not associated with PFS. CONCLUSION: The nADC values at 1-11 mm increments from the GTV margin were associated with OS. Future prospective multicenter studies are needed to validate the findings and to pave the way for the utilization of ADC for margin reduction in radiation planning.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Pessoa de Meia-Idade , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/radioterapia , Carga Tumoral , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Imagem de Difusão por Ressonância Magnética , Prognóstico , Estudos Retrospectivos
5.
J Neurooncol ; 163(3): 541-551, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37256526

RESUMO

PURPOSE: Recurrent high-grade glioma (rHGG) is a heterogeneous population, and the ideal patient selection for re-irradiation (re-RT) has yet to be established. This study aims to identify prognostic factors for rHGG patients treated with re-RT. METHODS: We retrospectively reviewed consecutive adults with rHGG who underwent re-RT from 2009 to 2020 from our institutional database. The primary objective was overall survival (OS). Secondary endpoints included prognostic factors for early death (< 6 months after re-RT) and predictors of radiation necrosis (RN). RESULTS: For the 79 patients identified, the median OS after re-RT was 9.9 months (95% CI 8.3-11.6). On multivariate analyses, re-resection at progression (HR 0.56, p = 0.027), interval from primary treatment to first progression ≥ 16.3 months (HR 0.61, p = 0.034), interval from primary treatment to re-RT ≥ 23.9 months (HR 0.35, p < 0.001), and re-RT PTV volume < 112 cc (HR 0.27, p < 0.001) were prognostic for improved OS. Patients who had unmethylated-MGMT tumours (OR 12.4, p = 0.034), ≥ 3 prior systemic treatment lines (OR 29.1, p = 0.022), interval to re-RT < 23.9 months (OR 9.0, p = 0.039), and re-RT PTV volume ≥ 112 cc (OR 17.8, p = 0.003) were more likely to die within 6 months of re-RT. The cumulative incidence of RN was 11.4% (95% CI 4.3-18.5) at 12 months. Concurrent bevacizumab use (HR < 0.001, p < 0.001) and cumulative equivalent dose in 2 Gy fractions (EQD2, α/ß = 2) < 99 Gy2 (HR < 0.001, p < 0.001) were independent protective factors against RN. Re-RT allowed for less corticosteroid dependency. Sixty-six percent of failures after re-RT were in-field. CONCLUSION: We observe favorable OS rates following re-RT and identified prognostic factors, including methylation status, that can assist in patient selection and clinical trial design. Concurrent use of bevacizumab mitigated the risk of RN.


Assuntos
Neoplasias Encefálicas , Glioma , Reirradiação , Adulto , Humanos , Prognóstico , Neoplasias Encefálicas/patologia , Bevacizumab/uso terapêutico , Estudos Retrospectivos , Recidiva Local de Neoplasia/patologia , Glioma/patologia , Necrose/tratamento farmacológico
6.
J Neurooncol ; 162(1): 119-128, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36914878

RESUMO

INTRODUCTION: Various treatment options exist to salvage stereotactic radiosurgery (SRS) failures for brain metastases, including repeat SRS and hypofractionated SRS (HSRS). Our objective was to report outcomes specific to salvage HSRS for brain metastases that failed prior HSRS/SRS. METHODS: Patients treated with HSRS to salvage local failures (LF) following initial HSRS/SRS, between July 2010 and April 2020, were retrospectively reviewed. The primary outcomes were the rates of LF, radiation necrosis (RN), and symptomatic radiation necrosis (SRN). Univariable (UVA) and multivariable (MVA) analyses using competing risk regression were performed to identify predictive factors for each endpoint. RESULTS: 120 Metastases in 91 patients were identified. The median clinical follow up was 13.4 months (range 1.1-111.1), and the median interval between SRS courses was 13.1 months (range 3.0-56.5). 115 metastases were salvaged with 20-35 Gy in 5 fractions and the remaining five with a total dose ranging from 20 to 24 Gy in 3-fractions. 67 targets (56%) were postoperative cavities. The median re-treatment target volume and biological effective dose (BED10) was 9.5 cc and 37.5 Gy, respectively. The 6- and 12- month LF rates were 18.9% and 27.7%, for RN 13% and 15.6%, and for SRN were 6.1% and 7.0%, respectively. MVA identified larger re-irradiation volume (hazard ratio [HR] 1.02, p = 0.04) and shorter interval between radiosurgery courses (HR 0.93, p < 0.001) as predictors of LF. Treatment of an intact target was associated with a higher risk of RN (HR 2.29, p = 0.04). CONCLUSION: Salvage HSRS results in high local control rates and toxicity rates that compare favorably to those single fraction SRS re-irradiation experiences reported in the literature.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Terapia de Salvação , Neoplasias Encefálicas/secundário , Lesões por Radiação/etiologia , Necrose/etiologia , Resultado do Tratamento
7.
Eur Neuropsychopharmacol ; 68: 11-26, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640729

RESUMO

Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.


Assuntos
Estimulação Encefálica Profunda , Depressão , Animais , Depressão/terapia , Depressão/metabolismo , Serotonina/metabolismo , Antidepressivos/uso terapêutico , Modelos Animais
8.
J Neurosurg ; 138(3): 674-682, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35986735

RESUMO

OBJECTIVE: With the incorporation of real-time image guidance on the Gamma Knife system allowing for mask-based immobilization (Gamma Knife Icon [GKI]), conventionally fully fractionated (1.8-3.0 Gy/day) GKI radiation can now be delivered to take advantage of an inherently minimal margin for delivery uncertainty, sharp dose falloff, and inhomogeneous dose distribution. This case series details the authors' preliminary experience in re-irradiating 7 complex primary intracranial tumors, which were considered to have been previously maximally radiated and situated adjacent to critical organs at risk. METHODS: The authors retrospectively reviewed all patients who received fractionated re-irradiation using GKI at the Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada, between 2016 and 2021. Patients with brain metastases, and those who received radiotherapy courses in 5 or fewer fractions, were excluded. All radiotherapy doses were converted to the equivalent total dose in 2-Gy fractions (EQD2), with the assumption of an α/ß ratio of 2 for late normal tissue toxicity and 10 for the tumor. RESULTS: A total of 7 patients were included in this case series. Three patients had recurrent meningiomas, as well as 1 patient each with ependymoma, intracranial sarcoma, pituitary macroadenoma, and papillary pineal tumor. Six patients had undergone prior linear accelerator-based conventional fractionated radiotherapy and 1 patient had undergone prior proton therapy. Patients were re-irradiated with a median (range) total dose of 50.4 (30-63.4) Gy delivered in a median (range) of 28 (10-38) fractions with GKI. The median (range) target volume was 6.58 (0.2-46.3) cm3. The median (range) cumulative mean EQD2 administered to the tumor was 121.1 (107.9-181.3) Gy, and the median (range) maximum point EQD2 administered to the brainstem, optic nerves, and optic chiasm were 91.6 (74.0-111.5) Gy, 58.9 (6.3-102.9) Gy, and 59.9 (36.7-127.3) Gy, respectively. At a median (range) follow-up of 15 (6-42) months, 6 of 7 patients were alive with 4 having locally controlled disease. Only 3 patients experienced treatment-related toxicities, which were self-limited. CONCLUSIONS: Fractionated radiotherapy using GKI may be a safe and effective method for the re-irradiation of complex progressive primary intracranial tumors, where the aim is to minimize the potential for serious late effects.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Radiocirurgia , Reirradiação , Humanos , Seguimentos , Estudos Retrospectivos , Estudos de Viabilidade , Neoplasias Encefálicas/cirurgia , Radiocirurgia/métodos , Neoplasias Meníngeas/cirurgia , Ontário
9.
Front Oncol ; 12: 1060098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518316

RESUMO

Purpose: This study reports the workflow and initial clinical experience of high grade glioma (HGG) radiotherapy on the 1.5 T MR-Linac (MRL), with a focus on the temporal variations of the tumor and feasibility of multi-parametric image (mpMRI) acquisition during routine treatment workflow. Materials and methods: Ten HGG patients treated with radiation within the first year of the MRL's clinical operation, between October 2019 and August 2020, were identified from a prospective database. Workflow timings were recorded and online adaptive plans were generated using the Adapt-To-Position (ATP) workflow. Temporal variation within the FLAIR hyperintense region (FHR) was assessed by the relative FHR volumes (n = 281 contours) and migration distances (maximum linear displacement of the volume). Research mpMRIs were acquired on the MRL during radiation and changes in selected functional parameters were investigated within the FHR. Results: All patients completed radiotherapy to a median dose of 60 Gy (range, 54-60 Gy) in 30 fractions (range, 30-33), receiving a total of 287 fractions on the MRL. The mean in-room time per fraction with or without post-beam research imaging was 42.9 minutes (range, 25.0-69.0 minutes) and 37.3 minutes (range, 24.0-51.0 minutes), respectively. Three patients (30%) required re-planning between fractions 9 to 12 due to progression of tumor and/or edema identified on daily MRL imaging. At the 10, 20, and 30-day post-first fraction time points 3, 3, and 4 patients, respectively, had a FHR volume that changed by at least 20% relative to the first fraction. Research mpMRIs were successfully acquired on the MRL. The median apparent diffusion coefficient (ADC) within the FHR and the volumes of FLAIR were significantly correlated when data from all patients and time points were pooled (R=0.68, p<.001). Conclusion: We report the first clinical series of HGG patients treated with radiotherapy on the MRL. The ATP workflow and treatment times were clinically acceptable, and daily online MRL imaging triggered adaptive re-planning for selected patients. Acquisition of mpMRIs was feasible on the MRL during routine treatment workflow. Prospective clinical outcomes data is anticipated from the ongoing UNITED phase 2 trial to further refine the role of MR-guided adaptive radiotherapy.

10.
J Neurooncol ; 159(3): 705-712, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35999435

RESUMO

OBJECTIVE: Gamma Knife Icon-based hypofractionated stereotactic radiosurgery (GKI-HSRS) is a novel technical paradigm in the treatment of brain metastases that allows for both the dosimetric benefits of the GKI stereotactic radiosurgery (SRS) platform as well as the biologic benefits of fractionation. We report mature local control and adverse radiation effect (ARE) outcomes following 5 fraction GKI-HSRS for intact brain metastases. METHODS: Patients with intact brain metastases treated with 5-fraction GKI-HSRS were retrospectively reviewed. Survival, local control, and adverse radiation effect rates were determined. Univariable and multivariable regression (MVA) were performed on potential predictive factors. RESULTS: Two hundred and ninety-nine metastases in 146 patients were identified. The median clinical follow-up was 10.7 months (range 0.5-47.6). The median total dose and prescription isodose was 27.5 Gy (range, 20-27.5) in 5 daily fractions and 52% (range, 45-93), respectively. The median overall survival (OS) was 12.7 months, and the 1-year local failure rate was 15.2%. MVA identified a total dose of 27.5 Gy vs. ≤ 25 Gy (hazard ratio [HR] 0.59, p = 0.042), and prior chemotherapy exposure (HR 1.99, p = 0.015), as significant predictors of LC. The 1-year ARE rate was 10.8% and the symptomatic ARE rate was 1.8%. MVA identified a gross tumor volume of ≥ 4.5 cc (HR 7.29, p < 0.001) as a significant predictor of symptomatic ARE. CONCLUSION: Moderate total doses in 5 daily fractions of GKI-HSRS were associated with high rates of LC and a low incidence of symptomatic ARE.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Radiocirurgia , Fracionamento da Dose de Radiação , Humanos , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento
11.
Artigo em Inglês | MEDLINE | ID: mdl-35473713

RESUMO

OBJECTIVE: To describe a case of functional tremor occurring after a successful MR-guided focused ultrasound thalamotomy (MRgFUS) for essential tremor. METHODS: A 71-year-old right-handed man with essential tremor was referred to us for consideration of deep brain stimulation surgery for worsening bilateral upper limb tremor after a successful left MRgFUS for essential tremor. RESULTS: On clinical exam, signs compatible with a functional tremor were noted, including entertainability and suppressibility. Electrophysiological studies were consistent with essential tremor and superimposed tremor fulfilling the laboratory-supported criteria for functional tremor. DISCUSSION: We describe the first reported case of a functional movement disorder occurring after successful MRgFUS procedure for essential tremor. Recognising this entity and its development after such therapeutic interventions is essential to avoid further unnecessary invasive therapies.

12.
Int J Radiat Oncol Biol Phys ; 112(2): 342-350, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537313

RESUMO

PURPOSE: Multileaf collimator (MLC) linear accelerator (Linac)-based hypofractionated stereotactic radiation therapy (HSRT) is increasingly used not only for large brain metastases or those adjacent to critical structures but also for those metastases that would otherwise be considered for single-fraction radiosurgery (SRS). However, data on outcomes in general are limited, and there is a lack of understanding regarding optimal dosing. Our aim was to report mature image-based outcomes for MLC-Linac HSRT with a focus on clinical and dosimetric factors associated with local failure (LF). METHODS AND MATERIALS: A total of 220 patients with 334 brain metastases treated with HSRT were identified. All patients were treated using a 5-fraction daily regimen and were followed with clinical evaluation and volumetric magnetic resonance imaging every 2 to 3 months. Overall survival and progression-free survival were calculated using the Kaplan-Meier method, with LF determined using Fine and Gray's competing risk method. Predictive factors were identified using Cox regression multivariate analysis. RESULTS: Median follow-up was 10.8 months. Median size of treated metastasis was 1.9 cm; 60% of metastases were <2 cm in size. The median total dose was 30 Gy in 5 fractions; 36% of the cohort received <30 Gy. The median time to LF and 12-month cumulative incidence of LF was 8.5 months and 23.8%, respectively. Median time to death and 12-month overall survival rates were 11.8 months and 48.2%, respectively. Fifty-two metastases (15.6%) had an adverse radiation effect, of which 32 (9.5%) were symptomatic necrosis. Multivariable analysis identified worse LF in patients who received a total dose of <30 Gy (hazard ratio, 1.62; P = .03), with LF at 6 and 12 months of 13% and 33% for patients treated with <30 Gy versus 5% and 19% for patients treated with >30 Gy. Exploratory analysis demonstrated a dose-response effect observed in all histologic types, including among breast cancer subtypes. CONCLUSION: Optimal local control is achieved with HSRT of ≥30 Gy in 5 daily fractions, independent of tumor volume and histology, with an acceptable risk of radiation necrosis.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/secundário , Humanos , Hipofracionamento da Dose de Radiação , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Resultado do Tratamento
13.
J Neurooncol ; 156(1): 49-59, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34661791

RESUMO

INTRODUCTION: Despite manifold advances in oncology, cancers of the central nervous system remain among the most lethal. Unique features of the brain, including distinct cellular composition, immunological privilege, and physical barriers to therapeutic delivery, likely contribute to the poor prognosis of patients with neuro-oncological disease. Focused ultrasound is an emerging technology that allows transcranial delivery of ultrasound energy to focal brain targets with great precision. METHODS: A review of the clinical and preclinical focused ultrasound literature was performed to obtain data regarding the current state of the focused ultrasound in context of neuro-oncology. A narrative review was then constructed to provide an overview of current and future applications of this technology. RESULTS: Focused ultrasound can facilitate direct control of tumors by thermal or mechanical ablation, as well as enhance delivery of diverse therapeutics by disruption of the blood-brain barrier without local tissue damage. Indeed, ultrasound-sensitive drug formulations or sonosensitizers may be combined with ultrasound blood-brain barrier disruption to achieve high local drug concentration while limiting systemic exposure to therapeutics. Furthermore, focused ultrasound can induce radiosensitization, immunomodulation, and neuromodulation. Here we review applications of focused ultrasound with a focus on approaches currently under clinical investigation for the treatment of neuro-oncological disease, such as blood-brain barrier disruption for drug delivery and thermal ablation. We also discuss design of clinical trials, selection of patient cohorts, and emerging approaches to improve the efficacy of transcranial ultrasound, such as histotripsy, as well as combinatorial strategies to exploit synergistic biological effects of existing cancer therapies and ultrasound. CONCLUSIONS: Focused ultrasound is a promising and actively expanding therapeutic modality for diverse neuro-oncological diseases.


Assuntos
Neoplasias do Sistema Nervoso , Terapia por Ultrassom , Humanos , Oncologia , Neoplasias do Sistema Nervoso/terapia , Neurologia
14.
Sci Transl Med ; 13(615): eabj4011, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644145

RESUMO

The blood-brain barrier (BBB) is an important factor limiting the effectiveness of central nervous system (CNS) therapeutics. MR-guided focused ultrasound (MRgFUS) is a noninvasive, spatially precise technology that enhances drug delivery across a temporarily permeable BBB. However, despite promising preclinical data, successful drug delivery has yet to be proven in human patients. In this study, we provide primary evidence of enhanced brain penetration of trastuzumab with MRgFUS in patients with Her2-positive breast cancer and brain metastases (NCT03714243). Four patients with progressive intracranial disease and stable systemic disease were enrolled in a single-arm open-labeled study. Twenty treatments combining transcranial MRgFUS with concomitant standard-of-care intravenous trastuzumab-based therapies were administered as outpatient procedures. The primary outcome was safety, and there were no treatment-related serious adverse events. The efficacy of trastuzumab delivery was demonstrated using 111In-BzDTPA-NLS-trastuzumab SPECT imaging. The standardized uptake value ratio (SUVR) of MRgFUS-treated lesions increased, on average, by 101 ± 71%, compared to −18 ± 26% in control lesions. MRgFUS enhanced drug uptake in 87 ± 17% of sonicated voxels (>20% increase in SUVR), with up to a 450% voxel-wise increase detected. Control lesions had 8 ± 8% voxels with >20% increase in SUVR. With treatment, unidimensional tumor measurements decreased by 19 ± 12%. This study provides first-in-human evidence of noninvasive, spatially targeted monoclonal antibody delivery across the BBB using MRgFUS, demonstrating the promise of this technology for a broad range of CNS diseases.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Receptor ErbB-2 , Trastuzumab/uso terapêutico , Ultrassonografia
15.
Int Rev Neurobiol ; 159: 221-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34446247

RESUMO

Focused ultrasound (FUS) is an emerging modality for performing incisionless neurosurgical procedures including thermoablation and blood-brain barrier (BBB) modulation. Emerging evidence suggests that low intensity FUS can also be used for neuromodulation with several benefits, including high spatial precision and the possibility of targeting deep brain regions. Here we review the existing data regarding the biological mechanisms of FUS neuromodulation, the characteristics of neuronal activity altered by FUS, emerging indications for FUS neuromodulation, as well as the strengths and limitations of this approach.


Assuntos
Neurônios , Procedimentos Neurocirúrgicos , Procedimentos Cirúrgicos Ultrassônicos , Humanos , Neurônios/fisiologia , Procedimentos Neurocirúrgicos/métodos
16.
Data Brief ; 35: 106950, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33850982

RESUMO

Patients undergoing standard chemoradiation post-resection had MRIs at radiation planning and fractions 10 and 20 of chemoradiation. MRIs were 1.5T and 3D T2-FLAIR, pre- and post-contrast 3D T1-weighted (T1) and echo planar DWI with three b-values (0, 500, and 1000s/mm2) were acquired. T2-FLAIR was coregistered to T1C images. Non-overlapping T1 contrast-enhancing (T1C) and nonenhancing T2-FLAIR hyperintense regions were segmented, with necrotic/cystic regions, the surgical cavity, and large vessels excluded. The simplified IVIM model was used to calculate voxelwise diffusion coefficient (D) and perfusion fraction (f) maps; ADC was calculated using the natural logarithm of b = 1000 over b = 0 images. T1C and T2-FLAIR segmentations were brought into this space, and medians calculated. MGMT promoter methylation status (MGMTPMS), age at diagnosis, and Eastern Cooperative Oncology Group (ECOG) performance status were extracted from electronic medical records. The data were presented, analyzed, and described in the article, "Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype Glioblastoma", published in Radiotherapy and Oncology [1].

17.
Neurosurgery ; 89(2): 164-176, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862622

RESUMO

BACKGROUND: Cortico-amygdalohippocampectomy (CAH) is effective for mesial temporal lobe epilepsy (mTLE). Concerns regarding surgical morbidity have generated enthusiasm for more minimally invasive interventions. A careful analysis of current data is warranted before widespread adoption of these techniques. OBJECTIVE: To systematically review the use of laser interstitial thermal therapy (LITT), stereotactic radiosurgery (SRS), radiofrequency thermocoagulation (RF-TC), and focused ultrasound for mTLE. METHODS: Major online databases were searched for prospective observational studies, randomized clinical trials, and retrospective studies (>50 patients), including mTLE patients. Outcomes of interest were seizure freedom (Engel I), complications and re-operation rates, and neuropsychological and quality-of-life (QoL) data. RESULTS: Nineteen publications were identified. At ≥6 mo postoperatively, LITT (9/19) Engel I outcomes ranged from 52% to 80%. SRS (3/19) has a latency period (52%-67%, 24-36 mo postoperatively) and the radiosurgery vs. open surgery for epilepsy (ROSE) trial reported inferiority of SRS compared to CAH. RF-TC (7/19) demonstrated variable seizure freedom rates (0%-79%) and high re-operation rates (0%-90%). Twelve studies reported neuropsychological outcomes but QoL (4/19) was not widely reported, and few studies (3/19) assessed both. Study quality ranged from fair to good. CONCLUSION: Based on nonrandomized data, LITT has compelling evidence of efficacy; however, comparisons to surgical resection are lacking. SRS has a latency period and is inferior to CAH (ROSE trial). RF-TC is a less resource-intensive alternative to LITT; however, comparisons of efficacy are limited. Additional studies are needed before minimally invasive procedures can supplant standard surgery.


Assuntos
Epilepsia do Lobo Temporal , Terapia a Laser , Epilepsia do Lobo Temporal/cirurgia , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Estudos Observacionais como Assunto , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento
19.
Neuro Oncol ; 23(10): 1789-1797, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693781

RESUMO

BACKGROUND: Liquid biopsy is promising for early detection, monitoring of response, and recurrence of cancer. The blood-brain barrier (BBB) limits the shedding of biomarker, such as cell-free DNA (cfDNA), into the blood from brain tumors, and their detection by conventional assays. Transcranial MR-guided focused ultrasound (MRgFUS) can safely and transiently open the BBB, providing an opportunity for less-invasive access to brain pathology. We hypothesized that MRgFUS can enrich the signal of circulating brain-derived biomarkers to aid in liquid biopsy. METHODS: Nine patients were treated in a prospective single-arm, open-label trial to investigate serial MRgFUS and adjuvant temozolomide combination in patients with glioblastoma (NCT03616860). Blood samples were collected as an exploratory measure within the hours before and after sonication, with control samples from non-brain tumor patients undergoing BBB opening (BBBO) alone (NCT03739905). RESULTS: Brain regions averaging 7.8 ± 6.0 cm3 (range 0.8-23.1 cm3) were successfully treated within 111 ± 39 minutes without any serious adverse events. We found MRgFUS acutely enhanced plasma cfDNA (2.6 ± 1.2-fold, P < .01, Wilcoxon signed-rank test), neuron-derived extracellular vesicles (3.2 ± 1.9-fold, P < .01), and brain-specific protein S100b (1.4 ± 0.2-fold, P < .01). Further comparison of the cfDNA methylation profiles suggests a signature that is disease- and post-BBBO-specific, in keeping with our hypothesis. We also found cfDNA-mutant copies of isocitrate dehydrogenase 1 (IDH1) increased, although this was in only one patient known to harbor the tumor mutation. CONCLUSIONS: This first-in-human proof-of-concept study shows MRgFUS enriches the signal of circulating brain-derived biomarkers, demonstrating the potential of the technology to support liquid biopsy for the brain.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Biomarcadores , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Humanos , Biópsia Líquida , Estudos Prospectivos
20.
J Neurooncol ; 152(1): 173-182, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33453002

RESUMO

PURPOSE: The concept of a radioresistant (RR) phenotype has been challenged with use of stereotactic body radiotherapy (SBRT). We compared outcomes following SBRT to RR spinal metastases to a radiosensitive cohort. METHODS: Renal cell, melanoma, sarcoma, gastro-intestinal, and thyroid spinal metastases were identified as RR and prostate cancer (PCA) as radiosensitive. The primary endpoint was MRI-based local failure (LF). Secondary endpoints included overall survival (OS) and vertebral compression fracture (VCF). RESULTS: From a prospectively maintained database of 1394 spinal segments in 605 patients treated with spine SBRT, 173 patients/395 RR spinal segments were compared to 94 patients/185 PCA segments. Most received 24-28 Gy in 2 fractions (68.9%) and median follow-up was 15.5 months (range, 1.4-84.2 months). 1- and 2-year LF rates were 19.2% and 22.4% for RR metastases, respectively, which were significantly greater (p < 0.001) than PCA (3.2% and 8.4%, respectively). Epidural disease (HR: 2.47, 95% CI 1.65-3.71, p < 0.001) and RR histology (HR: 2.41, 95% CI 1.45-3.99, p < 0.001) predicted for greater LF. Median OS was 17.4 and 61.0 months for RR and PCA cohorts, respectively. Lung/liver metastases, polymetastatic disease and epidural disease predicted for worse OS. 2-year VCF rates were ~ 13% in both cohorts. Coverage of the CTV V90 (clinical target volume receiving 90% of prescription dose) by ≥ 87% (HR: 2.32, 95% CI 1.29-4.18, p = 0.005), no prior spine radiotherapy (HR: 1.96, 95% CI 1.09-3.55, p = 0.025), and a greater Spinal Instability Neoplasia Score (p = 0.013) predicted for VCF. CONCLUSIONS: Higher rates of LF were observed after spine SBRT in RR metastases. Optimization strategies include dose escalation and aggressive management of epidural disease.


Assuntos
Tolerância a Radiação/efeitos da radiação , Radiocirurgia/métodos , Neoplasias da Coluna Vertebral/radioterapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Coluna Vertebral/secundário , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA