Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(10): e48454, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119025

RESUMO

We demonstrate that a live epithelial cell monolayer can act as a planar waveguide. Our infrared reflectivity measurements show that highly differentiated simple epithelial cells, which maintain tight intercellular connectivity, support efficient waveguiding of the infrared light in the spectral region of 1.4-2.5 µm and 3.5-4 µm. The wavelength and the magnitude of the waveguide mode resonances disclose quantitative dynamic information on cell height and cell-cell connectivity. To demonstrate this we show two experiments. In the first one we trace in real-time the kinetics of the disruption of cell-cell contacts induced by calcium depletion. In the second one we show that cell treatment with the PI3-kinase inhibitor LY294002 results in a progressive decrease in cell height without affecting intercellular connectivity. Our data suggest that infrared waveguide spectroscopy can be used as a novel bio-sensing approach for studying the morphology of epithelial cell sheets in real-time, label-free manner and with high spatial-temporal resolution.


Assuntos
Técnicas Biossensoriais , Células Epiteliais/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Cálcio/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase
2.
Biophys J ; 99(12): 4028-36, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21156146

RESUMO

The development of novel technologies capable of monitoring the dynamics of cell-cell and cell-substrate interactions in real time and a label-free manner is vital for gaining deeper insights into these most fundamental cellular processes. However, the label-free technologies available today provide only limited information on these processes. Here, we report a new (to our knowledge) infrared surface plasmon resonance (SPR)-based methodology that can resolve distinct phases of cell-cell and cell-substrate adhesion of polarized Madin Darby canine kidney epithelial cells. Due to the extended penetration depth of the infrared SP wave, the dynamics of cell adhesion can be detected with high accuracy and high temporal resolution. Analysis of the temporal variation of the SPR reflectivity spectrum revealed the existence of multiple phases in epithelial cell adhesion: initial contact of the cells with the substrate (cell deposition), cell spreading, formation of intercellular contacts, and subsequent generation of cell clusters. The final formation of a continuous cell monolayer could also be sensed. The SPR measurements were validated by optical microscopy imaging. However, in contrast to the SPR method, the optical analyses were laborious and less quantitative, and hence provided only limited information on the dynamics and phases of cell adhesion.


Assuntos
Comunicação Celular , Células Epiteliais/citologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , Movimento Celular , Forma Celular , Células Cultivadas , Cães , Propriedades de Superfície , Fatores de Tempo
3.
Biophys J ; 97(4): 1003-12, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19686647

RESUMO

We report on the application of surface plasmon resonance (SPR), based on Fourier transform infrared spectroscopy in the mid-infrared wavelength range, for real-time and label-free sensing of transferrin-induced endocytic processes in human melanoma cells. The evanescent field of the mid-infrared surface plasmon penetrates deep into the cell, allowing highly sensitive SPR measurements of dynamic processes occurring at significant cellular depths. We monitored in real-time, infrared reflectivity spectra in the SPR regime from living cells exposed to human transferrin (Tfn). We show that although fluorescence microscopy measures primarily Tfn accumulation in recycling endosomes located deep in the cell's cytoplasm, the SPR technique measures mainly Tfn-mediated formation of early endocytic organelles located in close proximity to the plasma membrane. Our SPR and fluorescence data are very well described by a kinetic model of Tfn endocytosis, suggested previously in similar cell systems. Hence, our SPR data provide further support to the rather controversial ability of Tfn to stimulate its own endocytosis. Our analysis also yields what we believe is novel information on the role of membrane cholesterol in modulating the kinetics of endocytic vesicle biogenesis and consumption.


Assuntos
Endocitose/efeitos dos fármacos , Melanoma/metabolismo , Modelos Biológicos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ressonância de Plasmônio de Superfície/métodos , Transferrina/farmacologia , Vesículas Transportadoras/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Vesículas Transportadoras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA