Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Cancer J ; 14(1): 16, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253636

RESUMO

Plk1-interacting checkpoint helicase (PICH) is a DNA translocase involved in resolving ultrafine anaphase DNA bridges and, therefore, is important to safeguard chromosome segregation and stability. PICH is overexpressed in various human cancers, particularly in lymphomas such as Burkitt lymphoma, which is caused by MYC translocations. To investigate the relevance of PICH in cancer development and progression, we have combined novel PICH-deficient mouse models with the Eµ-Myc transgenic mouse model, which recapitulates B-cell lymphoma development. We have observed that PICH deficiency delays the onset of MYC-induced lymphomas in Pich heterozygous females. Moreover, using a Pich conditional knockout mouse model, we have found that Pich deletion in adult mice improves the survival of Eµ-Myc transgenic mice. Notably, we show that Pich deletion in healthy adult mice is well tolerated, supporting PICH as a suitable target for anticancer therapies. Finally, we have corroborated these findings in two human Burkitt lymphoma cell lines and we have found that the death of cancer cells was accompanied by chromosomal instability. Based on these findings, we propose PICH as a potential therapeutic target for Burkitt lymphoma and for other cancers where PICH is overexpressed.


Assuntos
Linfoma de Burkitt , Adulto , Feminino , Animais , Humanos , Camundongos , Linfoma de Burkitt/genética , Linhagem Celular , Instabilidade Cromossômica , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , DNA
2.
NAR Cancer ; 5(4): zcad052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37829116

RESUMO

CIP2A is an inhibitor of the tumour suppressor protein phosphatase 2A. Recently, CIP2A was identified as a synthetic lethal interactor of BRCA1 and BRCA2 and a driver of basal-like breast cancers. In addition, a joint role of TopBP1 (topoisomerase IIß-binding protein 1) and CIP2A for maintaining genome integrity during mitosis was discovered. TopBP1 has multiple functions as it is a scaffold for proteins involved in DNA replication, transcriptional regulation, cell cycle regulation and DNA repair. Here, we briefly review details of the CIP2A-TopBP1 interaction, its role in maintaining genome integrity, its involvement in cancer and its potential as a therapeutic target.

3.
PLoS Genet ; 18(9): e1010412, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36099310

RESUMO

Homologous recombination (HR) is a double-strand break DNA repair pathway that preserves chromosome structure. To repair damaged DNA, HR uses an intact donor DNA sequence located elsewhere in the genome. After the double-strand break is repaired, DNA sequence information can be transferred between donor and recipient DNA molecules through different mechanisms, including DNA crossovers that form between homologous chromosomes. Regulation of DNA sequence transfer is an important step in effectively completing HR and maintaining genome integrity. For example, mitotic exchange of information between homologous chromosomes can result in loss-of-heterozygosity (LOH), and in higher eukaryotes, the development of cancer. The DNA motor protein Rdh54 is a highly conserved DNA translocase that functions during HR. Several existing phenotypes in rdh54Δ strains suggest that Rdh54 may regulate effective exchange of DNA during HR. In our current study, we used a combination of biochemical and genetic techniques to dissect the role of Rdh54 on the exchange of genetic information during DNA repair. Our data indicate that RDH54 regulates DNA strand exchange by stabilizing Rad51 at an early HR intermediate called the displacement loop (D-loop). Rdh54 acts in opposition to Rad51 removal by the DNA motor protein Rad54. Furthermore, we find that expression of a catalytically inactivate allele of Rdh54, rdh54K318R, favors non-crossover outcomes. From these results, we propose a model for how Rdh54 may kinetically regulate strand exchange during homologous recombination.


Assuntos
Proteínas de Saccharomyces cerevisiae , Cromossomos/metabolismo , DNA/genética , DNA Helicases/genética , Reparo do DNA/genética , DNA Topoisomerases/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO J ; 41(6): e108736, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35147992

RESUMO

As in human cells, yeast telomeres can be maintained in cells lacking telomerase activity by recombination-based mechanisms known as ALT (Alternative Lengthening of Telomeres). A hallmark of ALT human cancer cells are extrachromosomal telomeric DNA elements called C-circles, whose origin and function have remained unclear. Here, we show that extrachromosomal telomeric C-circles in yeast can be detected shortly after senescence crisis and concomitantly with the production of survivors arising from "type II" recombination events. We uncover that C-circles bind to the nuclear pore complex (NPC) and to the SAGA-TREX2 complex, similar to other non-centromeric episomal DNA. Disrupting the integrity of the SAGA/TREX2 complex affects both C-circle binding to NPCs and type II telomere recombination, suggesting that NPC tethering of C-circles facilitates formation and/or propagation of the long telomere repeats characteristic of type II survivors. Furthermore, we find that disruption of the nuclear diffusion barrier impairs type II recombination. These results support a model in which concentration of C-circles at NPCs benefits type II telomere recombination, highlighting the importance of spatial coordination in ALT-type mechanisms of telomere maintenance.


Assuntos
Poro Nuclear , Saccharomyces cerevisiae , Citoplasma , Humanos , Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Telômero/genética
5.
Plant Biotechnol J ; 20(3): 538-553, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687252

RESUMO

Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.


Assuntos
Dipterocarpaceae , Cromossomos , Dipterocarpaceae/genética , Melhoramento Vegetal , Extratos Vegetais
6.
Nat Commun ; 12(1): 5748, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593815

RESUMO

Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). BRCA2 acts by controlling RAD51 nucleoprotein filament formation on resected single-stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for efficient RAD51 filament formation at sites of DNA damage and HR-mediated DNA repair. Moreover, we find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and PP2A-B56 mutated cancers.


Assuntos
Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Proteína Fosfatase 2/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA2/genética , Quebras de DNA de Cadeia Dupla , Feminino , Predisposição Genética para Doença , Células HeLa , Humanos , Mutação , Fosforilação/genética , Ligação Proteica/genética , Proteína Fosfatase 2/genética , Rad51 Recombinase/metabolismo
7.
iScience ; 24(3): 102231, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748714

RESUMO

Functional telomeres in yeast lacking telomerase can be restored by rare Rad51- or Rad59-dependent recombination events that lead to type I and type II survivors, respectively. We previously proposed that polySUMOylation of proteins and the SUMO-targeted ubiquitin ligase Slx5-Slx8 are key factors in type II recombination. Here, we show that SUMOylation of Rad52 favors the formation of type I survivors. Conversely, preventing Rad52 SUMOylation partially bypasses the requirement of Slx5-Slx8 for type II recombination. We further report that SUMO-dependent proteasomal degradation favors type II recombination. Finally, inactivation of Rad59, but not Rad51, impairs the relocation of eroded telomeres to the Nuclear Pore complexes (NPCs). We propose that Rad59 cooperates with non-SUMOylated Rad52 to promote type II recombination at NPCs, resulting in the emergence of more robust survivors akin to ALT cancer cells. Finally, neither Rad59 nor Rad51 is required by itself for the survival of established type II survivors.

8.
Mol Cell ; 81(5): 1043-1057.e8, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421364

RESUMO

Homologous recombination (HR) is essential for maintenance of genome integrity. Rad51 paralogs fulfill a conserved but undefined role in HR, and their mutations are associated with increased cancer risk in humans. Here, we use single-molecule imaging to reveal that the Saccharomyces cerevisiae Rad51 paralog complex Rad55-Rad57 promotes assembly of Rad51 recombinase filament through transient interactions, providing evidence that it acts like a classical molecular chaperone. Srs2 is an ATP-dependent anti-recombinase that downregulates HR by actively dismantling Rad51 filaments. Contrary to the current model, we find that Rad55-Rad57 does not physically block the movement of Srs2. Instead, Rad55-Rad57 promotes rapid re-assembly of Rad51 filaments after their disruption by Srs2. Our findings support a model in which Rad51 is in flux between free and single-stranded DNA (ssDNA)-bound states, the rate of which is controlled dynamically though the opposing actions of Rad55-Rad57 and Srs2.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Recombinação Homóloga , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Imagem Individual de Molécula , Proteína Vermelha Fluorescente
9.
PLoS Genet ; 16(11): e1009187, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137092

RESUMO

Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linked FLCN variants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions in FLCN trigger disease are unknown. Here, we present an integrated computational and experimental study that reveals that the majority of such disease-causing FLCN variants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based stability screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature led to a stabilization of two FLCN missense proteins, and for one (R362C), function was re-established at low temperature. In conclusion, we propose that most BHD-linked FLCN missense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization and resulting restoration of function may hold therapeutic potential of certain disease-linked variants. Our computational saturation scan encompassing both missense variants and single site deletions in FLCN may allow classification of rare FLCN variants of uncertain clinical significance.


Assuntos
Síndrome de Birt-Hogg-Dubé/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Síndrome de Birt-Hogg-Dubé/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Mutação em Linhagem Germinativa , Humanos , Mutação com Perda de Função , Mutação de Sentido Incorreto , Agregados Proteicos , Ligação Proteica/genética , Dobramento de Proteína , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , Saccharomyces cerevisiae , Proteínas Supressoras de Tumor/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
10.
Nat Commun ; 11(1): 3664, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694532

RESUMO

Ethanol is a ubiquitous environmental stressor that is toxic to all lifeforms. Here, we use the model eukaryote Saccharomyces cerevisiae to show that exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate. Specifically, we find that ethanol slows down replication and affects localization of Mrc1, a conserved protein that helps stabilize the replisome. In addition, ethanol exposure also results in the recruitment of error-prone DNA polymerases to the replication fork. Interestingly, preventing this recruitment through mutagenesis of the PCNA/Pol30 polymerase clamp or deleting specific error-prone polymerases abolishes the mutagenic effect of ethanol. Taken together, this suggests that the mutagenic effect depends on a complex mechanism, where dysfunctional replication forks lead to recruitment of error-prone polymerases. Apart from providing a general mechanistic framework for the mutagenic effect of ethanol, our findings may also provide a route to better understand and prevent ethanol-associated carcinogenesis in higher eukaryotes.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Etanol/toxicidade , Taxa de Mutação , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Mutagênese , Testes de Mutagenicidade , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Cell Rep ; 32(1): 107849, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640219

RESUMO

Replication-blocking DNA lesions are particularly toxic to proliferating cells because they can lead to chromosome mis-segregation if not repaired prior to mitosis. In this study, we report that ZGRF1 null cells accumulate chromosome aberrations following replication perturbation and show sensitivity to two potent replication-blocking anticancer drugs: mitomycin C and camptothecin. Moreover, ZGRF1 null cells are defective in catalyzing DNA damage-induced sister chromatid exchange despite accumulating excessive FANCD2, RAD51, and γ-H2AX foci upon induction of interstrand DNA crosslinks. Consistent with a direct role in promoting recombinational DNA repair, we show that ZGRF1 is a 5'-to-3' helicase that catalyzes D-loop dissociation and Holliday junction branch migration. Moreover, ZGRF1 physically interacts with RAD51 and stimulates strand exchange catalyzed by RAD51-RAD54. On the basis of these data, we propose that ZGRF1 promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Membrana/metabolismo , Reparo de DNA por Recombinação , Biocatálise , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Recombinação Homóloga , Humanos , Proteínas de Membrana/deficiência , Mitomicina/farmacologia , Rad51 Recombinase/metabolismo , Fase S/efeitos dos fármacos
12.
Nucleic Acids Res ; 48(10): 5467-5484, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329774

RESUMO

Transcription-replication (T-R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T-R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T-R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T-R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication.


Assuntos
Replicação do DNA , Reparo de DNA por Recombinação , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA2/fisiologia , Linhagem Celular , Sobrevivência Celular , Quinase 9 Dependente de Ciclina/metabolismo , DNA/metabolismo , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Humanos , Mitose/genética , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , RecQ Helicases/fisiologia , Ubiquitinação
13.
Curr Genet ; 64(3): 697-712, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29204698

RESUMO

One of the most severe forms of DNA damage is the double-strand break (DSB). Failure to properly repair the damage can cause mutation, gross chromosomal rearrangements and lead to the development of cancer. In eukaryotes, homologous recombination (HR) and non-homologous end joining (NHEJ) are the main DSB repair pathways. Fumarase is a mitochondrial enzyme which functions in the tricarboxylic acid cycle. Intriguingly, the enzyme can be readily detected in the cytosolic compartment of all organisms examined, and we have shown that cytosolic fumarase participates in the DNA damage response towards DSBs. In human cells, fumarase was shown to be involved in NHEJ, but it is still unclear whether fumarase is also important for the HR pathway. Here we show that the depletion of cytosolic fumarase in yeast prolongs the presence of Mre11 at the DSBs, and decreases the kinetics of repair by the HR pathway. Overexpression of Sae2 endonuclease reduced the DSB sensitivity of the cytosolic fumarase depleted yeast, suggesting that Sae2 and fumarase functionally interact. Our results also suggest that Sae2 and cytosolic fumarase physically interact in vivo. Sae2 has been shown to be important for the DSB resection process, which is essential for the repair of DSBs by the HR pathway. Depletion of cytosolic fumarase inhibited DSB resection, while the overexpression of cytosolic fumarase or Sae2 restored resection. Together with our finding that cytosolic fumarase depletion reduces Sae2 cellular amounts, our results suggest that cytosolic fumarase is important for the DSB resection process by regulating Sae2 levels.


Assuntos
Citosol/enzimologia , Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , DNA/metabolismo , Endonucleases/metabolismo , Fumarato Hidratase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reparo do DNA por Junção de Extremidades , Ligação Proteica , Saccharomyces cerevisiae/enzimologia
14.
Nucleic Acids Res ; 46(3): 1280-1294, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29253234

RESUMO

Common Chromosomal Fragile Sites (CFSs) are specific genomic regions prone to form breaks on metaphase chromosomes in response to replication stress. Moreover, CFSs are mutational hotspots in cancer genomes, showing that the mutational mechanisms that operate at CFSs are highly active in cancer cells. Orthologs of human CFSs are found in a number of other mammals, but the extent of CFS conservation beyond the mammalian lineage is unclear. Characterization of CFSs from distantly related organisms can provide new insight into the biology underlying CFSs. Here, we have mapped CFSs in an avian cell line. We find that, overall the most significant CFSs coincide with extremely large conserved genes, from which very long transcripts are produced. However, no significant correlation between any sequence characteristics and CFSs is found. Moreover, we identified putative early replicating fragile sites (ERFSs), which is a distinct class of fragile sites and we developed a fluctuation analysis revealing high mutation rates at the CFS gene PARK2, with deletions as the most prevalent mutation. Finally, we show that avian homologs of the human CFS genes despite their fragility have resisted the general intron size reduction observed in birds suggesting that CFSs have a conserved biological function.


Assuntos
Proteínas Aviárias/genética , Linfócitos B/metabolismo , Sítios Frágeis do Cromossomo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas Aviárias/metabolismo , Linfócitos B/patologia , Sítios de Ligação , Linhagem Celular Transformada , Galinhas , Mapeamento Cromossômico , Sequência Conservada , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Metáfase , Anotação de Sequência Molecular , Mutação , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
15.
G3 (Bethesda) ; 7(10): 3379-3391, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28839115

RESUMO

Topoisomerase II (Top2) is an essential protein that resolves DNA catenations. When Top2 is inactivated, mitotic catastrophe results from massive entanglement of chromosomes. Top2 is also the target of many first-line anticancer drugs, the so-called Top2 poisons. Often, tumors become resistant to these drugs by acquiring hypomorphic mutations in the genes encoding Top2 Here, we have compared the cell cycle and nuclear segregation of two coisogenic Saccharomyces cerevisiae strains carrying top2 thermosensitive alleles that differ in their resistance to Top2 poisons: the broadly-used poison-sensitive top2-4 and the poison-resistant top2-5 Furthermore, we have performed genome-scale synthetic genetic array (SGA) analyses for both alleles under permissive conditions, chronic sublethal Top2 downregulation, and acute, yet transient, Top2 inactivation. We find that slowing down mitotic progression, especially at the time of execution of the mitotic exit network (MEN), protects against Top2 deficiency. In all conditions, genetic protection was stronger in top2-5; this correlated with cell biology experiments in this mutant, whereby we observed destabilization of both chromatin and ultrafine anaphase bridges by execution of MEN and cytokinesis. Interestingly, whereas transient inactivation of the critical MEN driver Cdc15 partly suppressed top2-5 lethality, this was not the case when earlier steps within anaphase were disrupted; i.e., top2-5 cdc14-1 We discuss the basis of this difference and suggest that accelerated progression through mitosis may be a therapeutic strategy to hypersensitize cancer cells carrying hypomorphic mutations in TOP2.


Assuntos
Citocinese , DNA Topoisomerases Tipo II/deficiência , Saccharomyces cerevisiae/citologia , DNA Topoisomerases Tipo II/genética , Microscopia de Fluorescência , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Análise de Célula Única
16.
Mol Cell Oncol ; 3(2): e1093066, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27308615

RESUMO

Mitosis is the process responsible for segregation of the duplicated genome into 2 new daughter cells. We recently identified an important function of the protein TopBP1 during mitosis by showing that TopBP1 suppresses transmission of DNA damage to daughter cells. Here, we further discuss the implications of our findings.

17.
Genes Dev ; 30(6): 700-17, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26966248

RESUMO

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.


Assuntos
Troca Genética/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , RNA Helicases DEAD-box/genética , Deleção de Genes , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Proteínas de Ligação a Telômeros/genética
18.
J Cell Biol ; 212(3): 281-8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811421

RESUMO

Topoisomerase IIß-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase-mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1's role in HR, with potential clinical implications for cancer treatment.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Rad51 Recombinase/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Quinase 1 Polo-Like
19.
Cell Cycle ; 15(2): 176-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26701150

RESUMO

Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.


Assuntos
Proteínas de Transporte/genética , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Mitose , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Galinhas , DNA/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
20.
J Cell Biol ; 210(4): 565-82, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26283799

RESUMO

Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fase G1 , Mitose , Proteínas Nucleares/fisiologia , Proteínas Aviárias/fisiologia , Núcleo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Fase G2 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transporte Proteico , Recombinases/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA